基于时间序列相似性查找的量化金融股票价格预测模型【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 基于动态规整距离的相似股票识别算法

随着量化投资的发展,股票价格时间序列的分析变得愈加重要。在金融量化的实际应用中,寻找相似的股票价格时间序列可以为未来的趋势预测和投资决策提供重要参考。然而,传统的相似序列搜索方法通常面临时间复杂度过高、准确性不足的问题。为了改进这一状况,本文提出了一种基于动态规整距离的相似股票识别算法,以提高相似序列搜索的效率和准确率。

首先,我们的方法采用了极值点等降维技术来提取股票时间序列的趋势特征。在对高维时间序列数据进行处理时,降维的目的是减少数据的冗余度,保留能够代表整体趋势的关键特征点。因此,极值点的提取可以有效降低数据量,同时保留股价的重要变动信息。这种降维处理不仅减少了计算复杂度,还提高了相似序列识别的效率。

接下来,利用提取的特征点作为条件,搜索具有相同特征的股票序列以形成候选集。在这个过程中,我们不仅仅关注价格本身的相似性,还考察其背后的趋势,以便更好地捕捉到股票之间的潜在关系。对于候选集中的每一个序列,我们进一步提取过滤出的重要点,将其添加到特征点列表中,以尽量保持原始序列的形状特征,确保不会遗漏对预测有价值的信息。

最后,基于动态时间规整(Dynamic Time Warping, DTW)距离来进行相似度计算。DTW是一种用于测量时间序列之间相似性的重要算法,可以有效地处理不同长度、时间尺度不一致的序列。通过使用DTW,本文提出的方法能够更加精确地计算股票价格序列的相似度,提高相似股票的识别准确率。实验结果表明,本文提出的方法在真实股票数据集上显著提升了相似股票搜索的效率和准确性,为投资策略的制定提供了更可靠的参考依据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值