tensorflow制作tfrecord格式数据集

#encoding=utf-8
import os
import tensorflow as tf
from PIL import Image

cwd = os.getcwd()

classes = {'test','test1','test2'}
#制作二进制数据
def create_record():
    writer = tf.python_io.TFRecordWriter("train.tfrecords")
    for index, name in enumerate(classes):
        class_path = cwd +"/"+ name+"/"
        for img_name in os.listdir(class_path):
            img_path = class_path + img_name
            img = Image.open(img_path)
            img = img.resize((64, 64))
            img_raw = img.tobytes() #将图片转化为原生bytes
            print index,img_raw
            example = tf.train.Example(
               features=tf.train.Features(feature={
                    "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
                    'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
               }))
            writer.write(example.SerializeToString())
    writer.close()

data = create_record()

#读取二进制数据
def read_and_decode(filename):
    # 创建文件队列,不限读取的数量
    filename_queue = tf.train.string_input_producer([filename])
    # create a reader from file queue
    reader = tf.TFRecordReader()
    # reader从文件队列中读入一个序列化的样本
    _, serialized_example = reader.read(filename_queue)
    # get feature from serialized example
    # 解析符号化的样本
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string)
        }
    )
    label = features['label']
    img = features['img_raw']
    img = tf.decode_raw(img, tf.uint8)
    img = tf.reshape(img, [64, 64, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(label, tf.int32)
    return img, label

if __name__ == '__main__':
    if 0:
        data = create_record("train.tfrecords")
    else:
        img, label = read_and_decode("train.tfrecords")
        print "tengxing",img,label
        #使用shuffle_batch可以随机打乱输入 next_batch挨着往下取
        # shuffle_batch才能实现[img,label]的同步,也即特征和label的同步,不然可能输入的特征和label不匹配
        # 比如只有这样使用,才能使img和label一一对应,每次提取一个image和对应的label
        # shuffle_batch返回的值就是RandomShuffleQueue.dequeue_many()的结果
        # Shuffle_batch构建了一个RandomShuffleQueue,并不断地把单个的[img,label],送入队列中
        img_batch, label_batch = tf.train.shuffle_batch([img, label],
                                                    batch_size=4, capacity=2000,
                                                    min_after_dequeue=1000)

        # 初始化所有的op
        init = tf.initialize_all_variables()

        with tf.Session() as sess:
            sess.run(init)
            # 启动队列
            threads = tf.train.start_queue_runners(sess=sess)
            for i in range(5):
                print img_batch.shape,label_batch
                val, l = sess.run([img_batch, label_batch])
                # l = to_categorical(l, 12)
                print(val.shape, l)

制作数据集

#制作二进制数据
def create_record():
    cwd = os.getcwd()
    classes = {'1','2','3'}
    writer = tf.python_io.TFRecordWriter("train.tfrecords")
    for index, name in enumerate(classes):
        class_path = cwd +"/"+ name+"/"
        for img_name in os.listdir(class_path):
            img_path = class_path + img_name
            img = Image.open(img_path)
            img = img.resize((28, 28))
            img_raw = img.tobytes() #将图片转化为原生bytes
            #print index,img_raw
            example = tf.train.Example(
                features=tf.train.Features(
                    feature={
                        "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),
                        'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))
                    }
                )
            )
            writer.write(example.SerializeToString())
    writer.close()

TFRecords文件包含了tf.train.Example 协议内存块(protocol buffer)(协议内存块包含了字段 Features)。我们可以写一段代码获取你的数据, 将数据填入到Example协议内存块(protocol buffer),将协议内存块序列化为一个字符串, 并且通过tf.python_io.TFRecordWriter 写入到TFRecords文件。

读取数据集

#读取二进制数据
def read_and_decode(filename):
    # 创建文件队列,不限读取的数量
    filename_queue = tf.train.string_input_producer([filename])
    # create a reader from file queue
    reader = tf.TFRecordReader()
    # reader从文件队列中读入一个序列化的样本
    _, serialized_example = reader.read(filename_queue)
    # get feature from serialized example
    # 解析符号化的样本
    features = tf.parse_single_example(
        serialized_example,
        features={
            'label': tf.FixedLenFeature([], tf.int64),
            'img_raw': tf.FixedLenFeature([], tf.string)
        }
    )
    label = features['label']
    img = features['img_raw']
    img = tf.decode_raw(img, tf.uint8)
    img = tf.reshape(img, [64, 64, 3])
    img = tf.cast(img, tf.float32) * (1. / 255) - 0.5
    label = tf.cast(label, tf.int32)
    return img, label

一个Example中包含Features,Features里包含Feature(这里没s)的字典。最后,Feature里包含有一个 FloatList, 或者ByteList,或者Int64List

加入队列

with tf.Session() as sess:
            sess.run(init)
            # 启动队列
            threads = tf.train.start_queue_runners(sess=sess)
            for i in range(5):
                print img_batch.shape,label_batch
                val, l = sess.run([img_batch, label_batch])
                # l = to_categorical(l, 12)
                print(val.shape, l)

这样就可以的到和tensorflow官方的二进制数据集了, 
注意:

  • 启动队列那条code不要忘记,不然卡死
  • 使用的时候记得使用val和l,不然会报类型错误:TypeError: The value of a feed cannot be a tf.Tensor object. Acceptable feed values include Python scalars, strings, lists, or numpy ndarrays.
  • 算交叉熵时候:cross_entropy=tf.nn.sparse_softmax_cross_entropy_with_logits(logits,labels)算交叉熵 
    最后评估的时候用tf.nn.in_top_k(logits,labels,1)选logits最大的数的索引和label比较
  • cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))算交叉熵,所以label必须转成one-hot向量

2017-11-12

补充:应广大小伙伴的要求,所有代码均托管于github,地址:github.com/tengxing 
参考文章: 
http://blog.csdn.net/u012759136/article/details/52232266 
http://www.shellsec.com/news/33788.html 
http://blog.csdn.net/tengxing007/article/details/54428262

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值