2021.10.21科研日志

一、工作内容

《Distributed optimal linear fusion estimators》仿真写完了。
一开始写的是不带反馈的结构,融合后的精度总体是较优的,但是前半部分存在收敛速度慢的问题,同时还有部分时刻估计精度低于局部滤波的情况。
后来开始写带反馈的结构,融合后发现估计误差不收敛,排查原因初步发现Lambda值是从第三时刻开始就是奇异的(=0),因此调整了广义逆。但结果仍不收敛。

二、心得

pinv是求广义逆

A=[1,2,3;
4,5,6;
7
首先,需要将数据转换成pandas的DataFrame格式,代码如下: ```python import pandas as pd data = {'日期/项目(A厂)': ['2021.1.1', '2021.1.2', '2021.1.3', '2021.1.4', '2021.1.5', '2021.1.6', '2021.1.7', '2021.1.8', '2021.1.9', '2021.1.10', '2021.1.11', '2021.1.12', '2021.1.13', '2021.1.14', '2021.1.15', '2021.1.16', '2021.1.17', '2021.1.18', '2021.1.19', '2021.1.20', '2021.1.21', '2021.1.22', '2021.1.23', '2021.1.24', '2021.1.25', '2021.1.26', '2021.1.27', '2021.1.28', '2021.1.29', '2021.1.30', '2021.1.31'], '进水': [149, 164, 86, 164, 146, 136, 93, 96, 90, 134, 141, None, None, None, 138, 138, 161, None, None, None, None, None, None, None, None, None, 114, 107, 121, None, None], 'COD': [20.1, 10.1, 37.1, 16.4, 10.9, 18.7, 17.2, 17.1, 18.5, 23.8, 17.7, 15.6, 11.0, 19.5, 18.5, 15.2, 16.5, 16.3, 17.3, 29.5, 20.7, 19.5, 18.9, 12.0, 23.9, 11.7, 10.6, 11.1, 14.2, 10.6, 12.5], '氨氮': [3.54, 0.65, 1.92, 1.44, 0.84, 1.59, 1.15, 1.61, 1.42, 2.46, 2.50, 1.48, 1.04, 3.55, 1.60, 1.82, 2.60, 2.10, 1.54, 3.54, 2.67, 3.25, 2.12, 2.38, 2.34, 1.51, 1.58, 1.31, 1.66, 1.26, 1.71], '总磷': [30.7, 20.1, 44.1, 21.5, 18.4, 29.7, 23.5, 24.2, 26.9, 31.7, 28.3, None, None, 24.0, 26.9, 27.8, 20.5, 27.9, 31.8, 37.8, 24.9, 29.3, None, 23.4, 23.5, 12.4, 27.9, 19.3, 17.6, 19.5, 15.4]} df = pd.DataFrame(data) ``` 接下来,我们可以使用matplotlib库进行数据可视化,这里我选择绘制折线图。代码如下: ```python import matplotlib.pyplot as plt # 设置图形大小 plt.figure(figsize=(10, 6)) # 绘制折线图 plt.plot(df['日期/项目(A厂)'], df['进水'], label='进水') plt.plot(df['日期/项目(A厂)'], df['COD'], label='COD') plt.plot(df['日期/项目(A厂)'], df['氨氮'], label='氨氮') plt.plot(df['日期/项目(A厂)'], df['总磷'], label='总磷') # 添加标题和标签 plt.title('A厂水质监测', fontsize=16) plt.xlabel('日期', fontsize=12) plt.ylabel('含量', fontsize=12) # 添加图例 plt.legend() # 显示图形 plt.show() ``` 运行上述代码,即可得到一张含有4条曲线的折线图,用于展示A厂水质监测数据的趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值