文章目录
一、设计原理
1.分组检测
分组检测的目的是近似估算数据分组的起始位置,也就是检测突发传输方式的信道上是否有新数据到达,因此是接收机工作的第一步,其算法效果的好坏将直接影响接收机的后续工作。分组检测的常用算法有接收信号能量检测、双滑动窗口分组检测和采用前导结构进行的延时相关算法分组检测。
2.延时相关算法
前导结构使得接收机可以采用一种非常简单有效的分组检测算法,该算法利用了前导结构中短训练符号的周期性,称为延时相关算法。IEEE 802. 11a系统的前导结构如图1.1所示。10个长度为16的短训练序列是一样的(即训练序列是周期结构的),可以利用这些短训练序列完成分组检测。短训练符号和长训练符号之间设置有循环前缀(CP),用于保证长训练符号不受短训练符号码间干扰(ISI)的影响。
图1-1 IEEE 802. 11a前导结构
延时相关算法信号流程如图1-2所示。窗口C为接收信号与其延时D个时刻的相关系数,称为延时相关;延时 z − D z^{-D} z−D等于前导起始的周期,对于IEEE 802. 11a, D = 16 D =16 D=16,即短训练符号的周期;窗口 P P P计算相关系数窗口期间内接收信号的能量,用于判决统计的归一化处理,使得判决变量 m n m_n mn独立于接收功率。
图1-2 延时相关算法的信号流程
延时相关 C n C_n Cn的值如下:
C n = ∑ k = 0 L − 1 r n − k r n − k − D ∗ ( 1 ) C_n=\sum_{k=0}^{L-1}{r_{n-k}r_{n-k-D}^\ast}(1) Cn=k=0∑L−1rn−krn−k−D∗(1)
式(1)为当前接收到的 L L L个数据与 D D D个时刻前收到的 L L L个数据进行的互相关。
接收信号能量 P n P_n Pn的值可表示为
P n = ∑ k = 0 L − 1 r n − k − D r n − k − D ∗ = ∑ k = 0 L − 1 ∣ r n − k − D ∣ 2 ( 2 ) P_n=\sum_{k=0}^{L-1}{r_{n-k-D}r_{n-k-D}^\ast}=\sum_{k=0}^{L-1}\left|r_{n-k-D}\right|^2 (2) Pn=k=0∑L−1rn−k−Drn−k−D∗=k=0∑L−1∣rn−k−D∣2(2)
则延时相关算法的判决变量 m n m_n mn为
m n = ∣ C n ∣ P n = ∣ ∑ k = 0 L − 1 r n − k r n − k − D ∗ ∣ ∑ k = 0 L − 1 r n − k − D r n − k − D ∗ ( 3 ) m_n=\frac{\left|C_n\right|}{P_n}=\frac{\left|\sum_{k=0}^{L-1}{r_{n-k}r_{n-k-D}^\ast}\right|}{\sum_{k=0}^{L-1}{r_{n-k-D}r_{n-k-D}^\ast}} (3) mn=Pn∣Cn∣=∑k=0L−1rn−k−Drn−k−D∗∣∣∣∑k=0L−1rn−krn−k−D∗∣∣∣(3)
采用延时相关算法进行分组检测时,当接收的信号只有噪声时,理想情况下输出的延时相关值 C n C_n Cn为0,因为噪声取样值的互相关系数为0,因此在数据分组开始前 m n m_n mn值很小;当接收到第2个短训练符号时, C n C_n Cn为相同短训练符号的互相关系数, m n m_n mn开始明显增加,并且出现一个持续9个短训练符号长度的相关平坦。
虽然延时相关算法可以较好的实现分组检测,但是在低信噪比条件下,判决变量 m n m_n mn可能由于受到信道中较大随机噪声的影响而偶发的超过预先设定的门限值,从而错误的判断有分组到来。因此,为了降低这种低信噪比条件下的高差错虚警概率,提高分组检测算法的可靠性,可以在延时相关算法的基础上增加保持长度的要求(图1-3) ,即判决变量要在预设门限值之上保持一定的采样周期数才判决有分组的到来,从而避免了较大随机噪声的影响。
图1-3 延时相关加长度保持的分组检测算法
延时相关分组检测算法是利用了发射信号中前导结构中短训练符号的周期性而产生的相关,同上面两种算法比较,这种相关性不易受外界因素如发射功率、信道、噪声等影响,具有更好的性能和更高的可靠性。因此,在本设计中选择延时相关加长度保持的算法,通过比较判决变量 m n m_n mn与阈值 T h T_h Th来判断是否有分组到达,见式(4)。当判决变量 m n m_n mn大于阈值 T h T_h Th时认为有分组到达。对于长度保持的分组检测, m n m_n mn除了必须大于 T h T_h Th外,还必须保持一定时间。设计中保持长度T定为32。
m n = ∣ C n ∣ P n > T h ( 4 ) m_n=\frac{\left|C_n\right|}{P_n}>T_h (4) mn=Pn∣Cn∣>