概率论与数理统计Chapter1——先导知识1


下面主要介绍分类加法计数原理和分步乘法计数原理,利用这两个原理讨论排列、组合等简单计数问题,并得到重要的二项式定理。

计数原理

计数原理是数学中的重要研究对象之一,分类加法计数原理分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。

分类加法计数原理

分类加法计数原理(加法原理):完成一件事,可以有n类方法,在第一类办法中有 m 1 m_1 m1种方法,…,在第n类办法中有 m n m_n mn种方法,那么,完成这件事共有 m 1 m_1 m1+…+ m n m_n mn种方法
特点:
(1)完成一件事有若干种方法,这些方法可以分成n类;
(2)用每一类中的每一种方法都可以完成这件事;
(3)把各类的方法相加,就可以得到完成这件事的所有方法数

分步乘法计数原理

分步乘法计数原理(乘法原理):完成一件事需要经过n个步骤,缺一不可,做第一步有 m 1 m_1 m1种方法,…,做第n步有 m n m_n mn种方法,那么,完成这件事共有 m 1 m_1 m1×…× m n m_n mn种方法
特点:
(1)完成一件事需要n个步骤,缺一不可
(2)完成每一步有若干方法
(3)把各步骤的方法数相乘,就可以得到完成这件事的所有方法数

排列组合

排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。

排列问题

一般地,把从n个不同的元素中,任取出m(m≤n)个元素,按照一定的顺序排成一列,叫作从n个不同的元素中任意取出m个元素的一个排列。我们把有关求排列个数的问题叫作排列问题。
把从n个不同的元素中任意取出m个元素的所有排列的个数叫作从n个不同元素中取出m个元素的排列数,记作 A n m A^m_n Anm=n(n-1)(n-2)…(n-m+1)
规定 A n 0 A_n^0 An0=1, A n n A_n^n Ann=n!

组合问题

一般地,把从n个不同的元素中,任取出m(m≤n)个元素为一组,叫作从n个不同的元素中取出m个元素的一个组合,我们把有关求组合的个数的问题叫作组合问题。
把从n个不同的元素中任意取出m个元素的所有组合的个数叫作从n个不同元素中取出m个元素的组合数,记作 C n m C_n^m Cnm

排列与组合的关系

把“从n个不同的元素中任意取出m个元素进行排列”这件事分成两步进行:
第一步:从n个不同元素中取出m个元素,一共有 C n m C_n^m Cnm种取法
第二步:把取出的m个元素进行排列,一共有 A m m A_m^m Amm种排法
根据乘法原理, A n m A_n^m Anm= C n m C_n^m Cnm· A m m A_m^m Amm
则得到组合数公式: C n m C_n^m Cnm= A n m A m m \frac{A_n^m}{A_m^m} AmmAnm
组合数有以下性质:
1. C n m C_n^m Cnm= C n m − n C_n^{m-n} Cnmn
2. C n m C_n^m Cnm= C n − 1 m − 1 C_{n-1}^{m-1} Cn1m1+ C n − 1 m C_{n-1}^m Cn1m
C n m C_n^m Cnm:从n个不同元素中取出m个元素。
假设这n个不同元素中有个元素是a,则将组合数分为两类:
一类是取出的m个元素含有a元素,相当于不含a元素的n-1个不同元素中取出m-1个元素,共 C n − 1 m − 1 C_{n-1}^{m-1} Cn1m1种取法
另一类是取出的m个元素中不含a元素,相当于不含a元素的n-1个元素中取出m个元素,共 C n − 1 m C_{n-1}^m Cn1m种取法

解决计数问题的相关方法

解决一个计数问题首先考虑要事件分几步完成,然后按步进行,某一步出现了种数不确定的情况,则返回上一步,找到不确定的原因,进行分类处理。
注意:
一个计数问题往往有两个切入点,例如:排队问题可以是位置来选人,然后步骤为第一个位置选人,第二个位置选人…;也可以人选位置,第一个人选位置,第二个人选位置…
两个切入点的复杂程度可能有差异,视情况而定。

特殊元素优先安排

有特殊要求的元素优先安排,然后按步骤进行。
例题:
在这里插入图片描述
1.两个切入点:人分步选工作,工作分步选人,显然后者更简单。
2.找到有特殊要求的元素,注意不是a,b工作,而是c,d,因为a,b工作5个人都可以做,而c,d只有C,D,E可以做
3.分步,特殊元素优先安排,c,d工作从三个人里面选两个,有顺序—— A 3 2 A_3^2 A32;a,b工作从剩下三个人里选两个—— A 3 2 A_3^2 A32,由乘法原理,共有 A 3 2 A_3^2 A32 A 3 2 A_3^2 A32种方式。

捆绑法

有相邻元素要求。
将要求相邻的元素捆绑在一起作为一个整体参与排列,至于这些元素内部有无顺序要求,视情况而定。
例题:
在这里插入图片描述
问题一:将5辆车捆绑在一起,5辆车内部有顺序(排列),有 A 5 5 A_5^5 A55种;再将捆绑在一起的5辆车看成一个整体,空车位相当于变成了4个,从4个中选出1个(组合),有 C 4 1 C_4^1 C41种,则共有 C 4 1 C_4^1 C41× A 5 5 A_5^5 A55种停法
问题二:将3个空车位捆绑在一起,3个空车位内部无顺序(组合),有1种;再将捆绑在一起的3个空车位看成一个整体,作为一个元素和5辆车进行排列(排列),有 A 6 6 A_6^6 A66种排法,则共有 A 6 6 A_6^6 A66种停法。

插空法

有“不相邻”要求的元素。
先将无“不相邻”要求的元素进行排列,再将有“不相邻”要求的元素针对无“不相邻”要求的元素排列后形成的空隙进行排列。
例1:
在这里插入图片描述
1.先将4个男生进行排列(无“不相邻”要求的元素)—— A 4 4 A_4^4 A44
2.从3个女生中选出2个进行捆绑,捆绑在一起的元素内部有顺序(排列)—— A 3 2 A_3^2 A32
3.捆绑在一起的两个元素看作一个整体和另一个女生作为两个元素进行插空(有顺序,排列),有5个空位—— A 5 2 A_5^2 A52
则共有 A 4 4 A_4^4 A44 A 3 2 A_3^2 A32 A 5 2 A_5^2 A52种排法

例2:
在这里插入图片描述
问题一:
1.将5辆车进行排列—— A 5 5 A_5^5 A55
2.将3个空车位进行插空,有6个空隙(无顺序,组合)—— C 6 3 C_6^3 C63
则共有 A 5 5 A_5^5 A55 C 6 3 C_6^3 C63种停法

问题二:
1.将5辆车进行排列—— A 5 5 A_5^5 A55
2.将3个空车位中两个进行捆绑——1
注意: 为什么不是 C 3 2 C_3^2 C32因为车位都是一样的,是相同元素,所以不能用 C 3 2 C_3^2 C32来表示 C 3 2 C_3^2 C32是指从3个不同元素中选出2个元素。所以从n种相同元素里取出m个元素,那就只有一种取法,而不是 C n m C_n^m Cnm
3.将2个元素(2个车位和1个车位)进行插空,有6个空隙,(有顺序,排列)—— A 6 2 A_6^2 A62
则共有 A 5 5 A_5^5 A55 A 6 2 A_6^2 A62种停法

注意:
分析问题一的第2点和问题二的第3点,将插空分成两步
1.车排列后 形成的空隙是不同的元素 ,所以以车位选空隙为切入点,从6个空隙中选出3个(问题一 C 6 3 C_6^3 C63)或2个(问题二 C 6 2 C_6^2 C62)是一个组合问题,可以用 C n m C_n^m Cnm来表示
2.问题一选出的3个空位是相同元素,所以无顺序,而问题二的两个元素(2个空车位和1个空车位)是不同元素,所以有顺序—— A 2 2 A_2^2 A22
则问题一插空结果为 C 6 3 C_6^3 C63,问题二插空结果为 C 6 2 C_6^2 C62 A 2 2 A_2^2 A22= A 6 2 A_6^2 A62

正难则反策略

要注意整体的选择,例如某个问题要求满足A,B两个条件,则可以选“满足A的情况”为整体,则该整体包括满足A又满足B的情况( A B AB AB),满足A但不满足B的情况( A A A B ‾ \overline{B} B),则“ A B AB AB= A A A- A A A B ‾ \overline{B} B
在这里插入图片描述
例题:
在这里插入图片描述

A A A:3个歌舞类节目不相邻,利用插空法—— A 3 3 A_3^3 A33 A 4 3 A_4^3 A43
B B B:2个小品节目不相邻
B ‾ \overline{B} B:2个小品节目相邻,捆绑法
A A A B ‾ \overline{B} B:3个歌舞类节目不相邻且2个小品节目相邻—— A 2 2 A_2^2 A22 A 2 2 A_2^2 A22 A 3 3 A_3^3 A33
A B AB AB= A A A- A A A B ‾ \overline{B} B—— A 3 3 A_3^3 A33 A 4 3 A_4^3 A43- A 2 2 A_2^2 A22 A 2 2 A_2^2 A22 A 3 3 A_3^3 A33

再复杂一点,有三个要求A,B,C时,则 A B C ABC ABC= A B AB AB- A B C ‾ AB\overline{C} ABC= A A A- A A A B ‾ \overline{B} B- A B C ‾ AB\overline{C} ABC
例题:
在这里插入图片描述
A A A:甲乙相邻,捆绑法——— A 2 2 A_2^2 A22 A 6 6 A_6^6 A66
B B B:丙不在第一天
C C C:丁不在最后一天
A A A B ‾ \overline{B} B:甲乙相邻且丙在第一天—— A 2 2 A_2^2 A22 A 5 5 A_5^5 A55
A B C ‾ AB\overline{C} ABC:丁在最后一天,甲乙相邻,丙不在第一天,相当于除去丁和最后一天剩下,6个人在剩下天数中进行排列,且要满足甲乙相邻 A ′ A' A,丙不在第一天 B ′ B' B,可再利用一次正难则反策略, A ′ A' A B ′ B' B= A ′ A' A- A ′ B ′ ‾ A'\overline{B'} AB—— A 2 2 A_2^2 A22 A 5 5 A_5^5 A55- A 2 2 A_2^2 A22 A 4 4 A_4^4 A44
A B C ABC ABC= A B AB AB- A B C ‾ AB\overline{C} ABC= A A A- A A A B ‾ \overline{B} B- A B C ‾ AB\overline{C} ABC= A 2 2 A_2^2 A22 A 6 6 A_6^6 A66- A 2 2 A_2^2 A22 A 5 5 A_5^5 A55- A 2 2 A_2^2 A22 A 5 5 A_5^5 A55+ A 2 2 A_2^2 A22 A 4 4 A_4^4 A44

定序问题&相同元素排列问题

定序问题:题目已经指定了某些元素的顺序,那么对于这些元素只选不排(人为定序)
有相同元素参与排列的问题:这些元素只选没必要排序(天然定序,只有一种),如1,1,1,2,3不同顺序形成的五位数有—— C 5 3 C_5^3 C53 A 2 2 A_2^2 A22
这类问题就是顺序确定的那部分元素的排列步骤中省去了排序的那步而只有选择
例题
在这里插入图片描述

在这里插入图片描述
丙丁捆绑在一起,甲乙丙丁四者顺序已定只需要选择位置 C 5 3 C_5^3 C53,则共有 C 5 3 C_5^3 C53 A 2 2 A_2^2 A22

挡板法

相同元素分配问题
在这里插入图片描述
C 8 4 C_8^4 C84
在这里插入图片描述
将这种题目转化成"每人至少一个",先每人都分2个,剩下6个苹果用挡板法进行分配 C 5 2 C_5^2 C52
在这里插入图片描述
先给2班分配1个名额,3班分配2个名额,然后问题就转化为6个名额给3个班分配,每个班至少分配到1个的问题,直接用挡板法—— C 5 2 C_5^2 C52

分组问题

分组≠分配,平均分组存在重复,平均分组的组数为n,则要除去 A n n A_n^n Ann
在这里插入图片描述
(1)分组: C 9 1 C_9^1 C91 C 8 3 C_8^3 C83 C 5 5 C_5^5 C55 分配: A 3 3 A_3^3 A33 ,则有 C 9 1 C_9^1 C91 C 8 3 C_8^3 C83 C 5 5 C_5^5 C55 A 3 3 A_3^3 A33 种放法

(2) C 9 3 C 6 3 C 3 3 A 3 3 \frac{C_9^3C_6^3C_3^3}{A_3^3} A33C93C63C33 A 3 3 A_3^3 A33

(3) C 9 2 C 7 2 C 5 5 A 2 2 \frac{C_9^2C_7^2C_5^5}{A_2^2} A22C92C72C55 A 3 3 A_3^3 A33

注意:涉及分配的问题一定要先分组再分配
在这里插入图片描述
1)分组: C 9 2 C 7 3 C 4 4 C_9^2C_7^3C_4^4 C92C73C44 分配:1,则共有 C 9 2 C 7 3 C 4 4 C_9^2C_7^3C_4^4 C92C73C44 种分法

2) C 9 2 C 7 3 C 4 4 A 3 3 C_9^2C_7^3C_4^4A_3^3 C92C73C44A33

3) C 9 3 C 6 3 C 3 3 A 3 3 A 3 3 \frac{C_9^3C_6^3C_3^3}{A_3^3}A_3^3 A33C93C63C33A33

4) C 9 2 C 7 2 C 5 5 A 2 2 A 3 3 \frac{C_9^2C_7^2C_5^5}{A_2^2}A_3^3 A22C92C72C55A33

易错易混淆

易混淆之三大分配模型

①5个人,3家店,每店至少1人
先分组(1,2,2—— C 5 2 C 3 2 C 1 1 A 2 2 \frac{C_5^2C_3^2C_1^1}{A_2^2} A22C52C32C11;1,1,3—— C 5 1 C 4 1 C 3 3 A 2 2 \frac{C_5^1C_4^1C_3^3}{A_2^2} A22C51C41C33)再分配—— A 3 3 A_3^3 A33,共有 C 5 2 C 3 2 C 1 1 + C 5 1 C 4 1 C 3 3 A 2 2 \frac{C_5^2C_3^2C_1^1+C_5^1C_4^1C_3^3}{A_2^2} A22C52C32C11+C51C41C33 A 3 3 A_3^3 A33种分法
②5个苹果分给3个人,每人至少1个
由于苹果是相同元素,则采用①的方法进行分配,则分配的时候会出现重复,同一个人不管拿哪组的2个苹果情况都是一样,这种问题采用挡板法更简单,给板选空隙的同时就达到了分组和分配的效果
③5个人,3家店,随便住
分步计数, 3 5 3^5 35

易错之组合VS排列

在这里插入图片描述
错误思路:从3门A类中选1门,再从2门B类中选1门,再从剩下的3门中选1门 C 3 1 C 2 1 C 3 1 C_3^1C_2^1C_3^1 C31C21C31,有重复,因为这里有将无顺序问题产生了顺序,从A(或者B)中选出2本时应该是同时选出而无顺序问题
极端现象从两本相同的书中选两本书,按错误思路,先选1本,在选1本,则 C 2 1 C 2 1 C_2^1C_2^1 C21C21,事实只有1种情况,这里将无顺序问题产生了顺序,即将组合问题变成了排列问题
正确思路:分类:2A1B—— C 3 2 C 2 1 C_3^2C_2^1 C32C21;1A2B—— C 3 1 C 2 2 C_3^1C_2^2 C31C22,则共 C 3 2 C 2 1 C_3^2C_2^1 C32C21+ C 3 1 C 2 2 C_3^1C_2^2 C31C22种选法

二项式定理

( a + b ) n (a+b)^n (a+b)n= C n 0 a n b 0 + C n 1 a n − 1 b + . . . + C n r a n − r b r + . . . + C n n a 0 b n C_n^0a^nb^0+C_n^1a^{n-1}b+...+C_n^ra^{n-r}b^r+...+C_n^na^0b^n Cn0anb0+Cn1an1b+...+Cnranrbr+...+Cnna0bn
通项:第r+1项 T r + 1 T_{r+1} Tr+1= C n r a n − r b r C_n^ra^{n-r}b^r Cnranrbr
注意区分二项式系数和系数
1.求系数问题:①利用通项 ②利用变量替换(换元法)③凑完全平方
在这里插入图片描述
利用变量替换(换元法)
在这里插入图片描述
利用凑完全平方法

2.求两个二项式乘积展开式中某一项前面的系数问题
①如果其中一个二项式简单,则利用分析法(分析两个二项式哪几项相乘为所求,有目标的相乘),无需将另一个二项式展开
②两个二项式都复杂,利用两个二项式的通项相乘

3.二项式系数最值: 二项式系数最中间的一项或两项的值
4.二项式系数的和与系数和
( a + b ) n (a+b)^n (a+b)n= C n 0 a n b 0 + C n 1 a n − 1 b + . . . + C n r a n − r b r + . . . + C n n a 0 b n C_n^0a^nb^0+C_n^1a^{n-1}b+...+C_n^ra^{n-r}b^r+...+C_n^na^0b^n Cn0anb0+Cn1an1b+...+Cnranrbr+...+Cnna0bn
利用赋值法
二项式系数的和:令a=1,b=1, C n 0 + C n 1 + . . . + C n n C_n^0+C_n^1+...+C_n^n Cn0+Cn1+...+Cnn= 2 n 2^n 2n

讨论 ( 2 x + 1 ) 10 (2x+1)^{10} (2x+1)10
二项式系数的和: 2 10 2^{10} 210
系数和:令x=1, 3 10 3^{10} 310
例题:
在这里插入图片描述
(1)取x=1, a 0 + . . . + a 7 a_0+...+a_7 a0+...+a7=-1,取 x = 0 , a 0 = 1 x=0,a_0=1 x=0,a0=1,则答案=-2
(2)
取x=1,则 − 1 = a 0 + a 1 + . . . + a 7 -1=a_0+a_1+...+a_7 1=a0+a1+...+a7
取x=-1,则 3 7 = a 0 − a 1 + a 2 − . . . − a 7 3^7=a_0-a_1+a_2-...-a_7 37=a0a1+a2...a7,则答案= − 1 − 3 7 2 \frac{-1-3^7}{2} 2137
(3)由(2)得答案= − 1 + 3 7 2 \frac{-1+3^7}{2} 21+37
(4) ∣ a 0 ∣ + . . . + ∣ a 7 ∣ |a_0|+...+|a_7| a0+...+a7相当于 ( 1 + 2 x ) 7 (1+2x)^7 (1+2x)7的系数,取x=1,答案= 3 7 3^7 37
(5)取x=0, a 0 a_0 a0=1,对题目等式两边求导,得到 − 14 ( 1 − 2 x ) 6 = a 1 + 2 a 2 x + . . . + 7 a 7 x 6 -14(1-2x)^6=a_1+2a_2x+...+7a_7x^6 14(12x)6=a1+2a2x+...+7a7x6,取x=1,答案=1-14=-13

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yun_gao_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值