一、低质量成像增强
弱光带来的噪声、退化极大影响图像质量,研究人员基于Retinex理论(I = R ◦ L人类视觉的亮度和颜色感知的模型,色彩恒常理论)将图像解构成两个部分,一个是负责调光的照明另外一个是负责退化消除的反射。原始图像空间被解构成两个子空间,更容易学习。(from 天津大学)
论文地址:https://arxiv.org/pdf/1905.04161.pdf
二、基于特征前传的图像去雾, (from MIT Lincoln Laboratory)
左侧为FastNet模型将特征直接传入金字塔来精炼。右侧为DualFastNet,同时估计了大气光(散射)模型和投射模型。
论文地址:https://arxiv.org/pdf/1904.09059.pdf
ref:https://github.com/hezhangsprinter/DCPDN
dataset:2019 NTIRE Image Dehazing Challenge
O-HAZE, I-HAZE, and DenseHaze datasets
Local Light Field Fusion:Practical View Synthesis with Prescriptive Sampling Guidelines
低质量图像增强局域光场融合: 基于多个非规则视角插值得到新视角的渲染图像。(from 加州大学伯克利分校)
论文地址:https://arxiv.org/pdf/1905.00889.pdf
EFFICIENT BLIND DEBLURRING UNDER HIGH NOISE LEVELS
高噪声水平下的盲去噪, 图像盲去噪的基本任务是在未知相机参数/退化模型的情况下重建出清晰的结果。但在低光情况下长曝光造成的运动模糊和(高中等)噪声使得传统方法无法处理。研究人员基于l0梯度先验来估计模糊核,并利用解卷积的方法提高去噪性能。(from Université Paris-Saclay)
论文地址:https://arxiv.org/pdf/1904.09159.pdf
Deep Likelihood Network for Image Restoration with Multiple Degradations
Deep Likelihood Network, 用于多种图像退化过程的图像修复过程。通过在修复网络中加入了简单有效的回归模块来从置信项解耦退化影响(from intel 清华 HIT)
论文地址:https://arxiv.org/pdf/1904.09105.pdf
ASSESSING THE SHARPNESS OF SATELLITE IMAGES: STUDY OF THE PLANETSCOPE CONSTELLATION
通过估计卷积核来量化微信图像的清晰度, 可计算清晰度的绝对量化指标,在进一步处理前对图像进行预处理。这种方法的优势还在于完全的盲去噪不需要先验知识。(from Kayrros France)
论文地址:https://arxiv.org/pdf/1904.09159.pdf
三、FashionAI
Fashion++: Minimal Edits for Outfit Improvement
通过微小的改变改进时尚程度,研究人员提出了在与学习的编码下合成时尚元素,给出时尚修饰建议。(from UT Austin )
四、图像听力
Listen to the Image, 通过将视觉转换为声音帮助盲人感知周遭世界。(from OPTIMAL)
论文地址:https://arxiv.org/pdf/1904.09115.pdf
五、显著性物体检测
Salient Object Detection in the Deep Learning Era: An In-Depth Survey
物体显著性检测Salient Object Detection的综述, 主要侧重于最近5年基于深度学习的SOD方法。(from 人工智能感知研究院阿联酋 香港中文)
论文地址:https://arxiv.org/pdf/1904.09146.pdf
六、密集型人脸检测
RetinaFace: Single-stage Dense Face Localisation in the Wild
论文地址:https://arxiv.org/pdf/1905.00641.pdf
代码地址:ref:人脸分析库:insightface:https://github.com/deepinsight/insightface