在制造业中,部分企业为了实现数字化转型,嫁接了大量的智能制造设备,诸如MES、ERP、SAP等。在实际生产过程中,每天产生大量的生产数据,这些海量数据被保存在设备中、PC电脑中、设备自带的工控机中等等。
大数据时代下,数据最有价值,那如何对质量数据进行有效整理及分析呢,可以从以下方面进行:
1、采集数据要齐全
生产质量分析平台,快速整合生产全量数据,即时获取影响质量的全量数据,建立统一的质量数据平台。
质量数据,主要包括工件的质量数据,也就是涉及到质量的所有几何数据。目前制造业产品生产过程流程控制越来越严谨,测量几乎延伸到产品生产全过程,生产质量分析平台能将这些数据统统采集到,并且归类整理,实时更新。
质量数据,还包含散落在工厂内外的所有外部以及所有环节上的数据,这些数据不仅仅指的是涉及到质量的数据,还有设备信息、人员信息、环境等间接影响质量的数据。
2、生产质量分析
制造业对数据分析很多还是停留在人工核算及分析,人工核算存在误差是常有的事,人工分析很多都是带着自己的主观臆断,并不是真正意义上的数据的应用。
生产质量分析平台,能打通影响质量的全量数据,比如生产全过程数据、环境、设备、操作人员、工艺等数据的关联分析。
在万物互联的信息世界,质量管理中质量问题的发生不仅仅是简单的因果关系,制造业内部的各种数据之间都有着联系,并且有着未知的隐藏规律