使用pytorch过程中需要保存模型结构、loss变化、accuracy变化,可以尝试使用tensorboard
pytorch 1.8 版本后自动支持tensorboard
如果出现
ModuleNotFoundError: No module named 'tensorboard'
可以通过输入以下命令解决:
pip install tb-nightly
1.第一步,设置路径
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter(log_dir=run_root_dir + "tensorboard/")
2.写入需要保存的东西
net = model.resnet50()
init_img = torch.zeros((1, 1, 128, 128), device=device)
tb_writer.add_graph(net, init_img)
......
tb_writer.add_scalar("loss", loss, epoch)
......
tb_writer.add_scalar("accuracy", val_accurate, epoch)
3.训练好以后,进入生成tensorboard文件的路径
(pytorch_gpu) yan@dell-PowerEdge-T640:/mnt/data_synology/clustering_v2//result/2021_05_03_12_58_07/tensorboard$ tensorboard --logdir=./
得到
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)
4.进入浏览器