在pytorch中简单使用tensorboard

本文介绍如何在PyTorch中集成TensorBoard来记录模型结构、损失和准确率的变化,包括安装配置步骤及示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用pytorch过程中需要保存模型结构、loss变化、accuracy变化,可以尝试使用tensorboard

pytorch 1.8 版本后自动支持tensorboard

如果出现

ModuleNotFoundError: No module named 'tensorboard'

可以通过输入以下命令解决:

pip install tb-nightly

1.第一步,设置路径

from torch.utils.tensorboard import SummaryWriter

tb_writer = SummaryWriter(log_dir=run_root_dir + "tensorboard/")

2.写入需要保存的东西

net = model.resnet50()
init_img = torch.zeros((1, 1, 128, 128), device=device)
tb_writer.add_graph(net, init_img)
......
tb_writer.add_scalar("loss", loss, epoch)
......
tb_writer.add_scalar("accuracy", val_accurate, epoch)

3.训练好以后,进入生成tensorboard文件的路径

(pytorch_gpu) yan@dell-PowerEdge-T640:/mnt/data_synology/clustering_v2//result/2021_05_03_12_58_07/tensorboard$ tensorboard --logdir=./

得到

Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.4.1 at http://localhost:6006/ (Press CTRL+C to quit)

4.进入浏览器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值