第一章内容
信息熵:表示信源的信息选择的不定度的测度
信号:是消息的载体,表示消息的物理量
信源编码器:数据压缩,提高有效性
信道编码:加入纠错元素,提高可靠性,抗干扰能力加强
方差公式:
D(X)=E{[x-E(X)2]}=E(X2)-E2(X)
第二章内容
自信息量:I(xi)=-log p(xi)
自信息量的定义反映了时间自身的不确定性
小概率事件包含的不确定性大,其自信息量大,而大概率事件则相反
联合自信息量:
I(xiyj)=-log p(xiyj)
若两事件独立,则I(xiyj)=I(xi)+I(yj)
条件自信息量:在一事件给定条件下的条件自信息量
I(xi|yj)=-log p(xi|yj)
I(xiyj)=I(xi|yj)+I(yj)
I(x1x2…xn)=I(x1)+I(x2|x1)+…I(xn|x1x2…xn-1)
即xi的发生将帮助减小或增大yj自身的不确定性
维拉图
互信息量:事件一发生给出关于事件二的信息量
I
(
x
i
;
y
j
)
=
p
(
x
i
∣
y
j
)
p
(
x
i
)
=
l
o
g
1
p
(
x
i
)
−
l
o
g
1
p
(
x
i
∣
y
j
)
=
I
(
x
i
)
−
I
(
x
i
∣
y
j
)
I(x_i;y_j)=\frac{p(x_i|y_j)}{p(x_i)}=log\frac{1}{p(x_i)}-log\frac{1}{p(x_i|y_j)}=I(x_i)-I(x_i|y_j)
I(xi;yj)=p(xi)p(xi∣yj)=logp(xi)1−logp(xi∣yj)1=I(xi)−I(xi∣yj)
表明在yj发生的情况下xi仍具有的不确定性
互信息量可正可负
离散集的平均自信息量,也叫做信息熵
H
(
X
)
=
−
∑
i
=
1
q
p
(
x
i
)
l
o
g
p
(
x
i
)
H(X)=-\sum_{i=1}^{q}p(x_i)log p(x_i)
H(X)=−i=1∑qp(xi)logp(xi)
熵具有对称性,各分量角换次序,熵不变
熵具有非负性,确定场的熵最小,为0
熵具有扩展性,增加极小概率事件,熵值可看作不变
熵具有可加性:H(XY)=H(X)+H(Y|X)
熵具有极值性,最大熵定理,等概场的熵最大,即H(X)=log n
熵具有上凸性,Hn(p1,p2,…pq)是概率分布(p1,p2,…pq)的严格上凸函数