点云配准概述

首先,稍微总结下点云配准吧

点云配准是将原始点云和目标点云进行对齐。

整个过程分为两步:粗配准和精配准。即先粗对齐,再进行精调,最终精度能达到我们的要求。

粗配准会利用一些点云特征去找到两片点云的几组点对,精配准会利用点云特征找到两片点云的更多组点对。

再具体点。在点云数据只有三维坐标时进行配准,这个时候,我们所能提取到的就只有点云的几何特征,常用的特征包括,点云的曲率,点云中平面四边形的仿射不变性等特征。

事实上不管是什么配准方法,都是基于特征匹配的原理。无论是从图像当中获取额外的辅助的信息,或者只是从三维点云当中提取的几何特征,都是为了更好得抽象出点云的特征以及两个点云之间的对应点。毫无疑问,如果我们能够通过遍历点云的各个点基所对应的变换,肯定能够找到最佳的变换,但是这个计算量是一个天文数字,在实际应用当中是不太可能的。所以人们想出了各种方法试图在减少计算量的同时又尽量保证配准的精度。

因此,我们是在去摸索更高效的去寻找最佳变换,使得精度能够达到要求。

————————————————————————————————————————————————————————————

现在比较成熟的点云配准基本分为两部分,首先进行粗配准,粗配准的算法多样,也是我觉得在点云配准当中最重要也是最值得研究的部分,说是粗配准,但是要求要有较高的精度,粗配准的主要作用是为后续的精准配准ICP算法提供较好的迭代初始位置。经过粗配准之后,这两个点云的重合程度已经很高了,若要进一步提高,就需要后续的精准配准,现在一般都是采用ICP(迭代最近点)算法或者其变种来进行的,通过多次迭代,可以进一步提高配准的精度,但是若是没有粗配准提供较好的迭代初始位置,ICP算法往往会陷入局部区域的最优解,而得不到全局的最优解。

具体的粗配准和精配准的算法我会在每一部分展开说明。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值