深度学习实战笔记7kaggle比赛:图像分类

import collections
import math
import os
import shutil
import pandas as pd
from mxnet import gluon, init, npx
from mxnet.gluon import nn
from d2l import mxnet as d2l

npx.set_np()

获取并组织数据集

比赛数据集分为训练集和测试集,其中训练集包含50000张、测试集包含300000张图像。 在测试集中,10000张图像将被用于评估,而剩下的290000张图像将不会被进行评估,包含它们只是为了防止手动标记测试集并提交标记结果。 两个数据集中的图像都是png格式,高度和宽度均为32像素并有三个颜色通道(RGB)。 这些图片共涵盖10个类别:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。

下载数据集

为了便于入门,[我们提供包含前1000个训练图像和5个随机测试图像的数据集的小规模样本]

#@save
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
                                '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')

# 如果使用完整的Kaggle竞赛的数据集,设置demo为False
demo = True

if demo:
    data_dir = d2l.download_extract('cifar10_tiny')
else:
    data_dir = '../data/cifar-10/'

[整理数据集]

我们需要整理数据集来训练和测试模型。 首先,我们用以下函数读取CSV文件中的标签,它返回一个字典,该字典将文件名中不带扩展名的部分映射到其标签。

#@save
def read_csv_labels(fname):
    """读取fname来给标签字典返回一个文件名"""
    with open(fname, 'r') as f:
        # 跳过文件头行(列名)
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name, label) for name, label in tokens))

labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# 训练样本 :', len(labels))
print('# 类别 :', len(set(labels.values())))

[将验证集从原始的训练集中拆分出来]

接下来,我们定义reorg_train_valid函数来[将验证集从原始的训练集中拆分出来]。 此函数中的参数valid_ratio是验证集中的样本数与原始训练集中的样本数之比。 更具体地说,令𝑛n等于样本最少的类别中的图像数量,而𝑟r是比率。 验证集将为每个类别拆分出max(⌊𝑛𝑟⌋,1)max(⌊nr⌋,1)张图像。 让我们以valid_ratio=0.1为例,由于原始的训练集有50000张图像,因此train_valid_test/train路径中将有45000张图像用于训练,而剩下5000张图像将作为路径train_valid_test/valid中的验证集。 组织数据集后,同类别的图像将被放置在同一文件夹下。

#@save
def copyfile(filename, target_dir):
    """将文件复制到目标目录"""
    os.makedirs(target_dir, exist_ok=True)
    shutil.copy(filename, target_dir)

#@save
def reorg_train_valid(data_dir, labels, valid_ratio):
    """将验证集从原始的训练集中拆分出来"""
    # 训练数据集中样本最少的类别中的样本数
    n = collections.Counter(labels.values()).most_common()[-1][1]
    # 验证集中每个类别的样本数
    n_valid_per_label = max(1, math.floor(n * valid_ratio))
    label_count = {}
    for train_file in os.listdir(os.path.join(data_dir, 'train')):
        label = labels[train_file.split('.')[0]]
        fname = os.path.join(data_dir, 'train', train_file)
        copyfile(fname, os.path.join(data_dir, 'train_valid_test',
                                     'train_valid', label))
        if label not in label_count or label_count[label] < n_valid_per_label:
            copyfile(fname, os.path.join(data_dir, 'train_valid_test',
                                         'valid', label))
            label_count[label] = label_count.get(label, 0) + 1
        else:
            copyfile(fname, os.path.join(data_dir, 'train_valid_test',
                                         'train', label))
    return n_valid_per_label
  1. copyfile:

    • 功能:将指定的文件复制到目标目录。
    • 参数:
      • filename: 要复制的文件的路径。
      • target_dir: 目标目录的路径。
    • 执行流程:
      • 使用 os.makedirs 创建目标目录,如果目录已存在,则 exist_ok=True 会避免抛出错误。
      • 使用 shutil.copy 将文件从 filename 复制到 target_dir
  2. reorg_train_valid:

    • 功能:从原始的训练集中拆分出验证集,确保每个类别在验证集中有相同数量的样本。
    • 参数:
      • data_dir: 数据集的根目录。
      • labels: 一个字典,键是文件名(不包含扩展名),值是对应的标签。
      • valid_ratio: 用于确定验证集大小的比例。
    • 执行流程:
      • 首先,计算训练集中每个类别的样本数,并找出最少样本数 n
      • 计算每个类别在验证集中应有的样本数 n_valid_per_label,至少为1。
      • 初始化一个字典 label_count 来跟踪每个类别已经复制到验证集中的样本数。
      • 遍历 data_dir/train 目录中的所有文件:
        • 对于每个文件,获取其标签,并确定文件的完整路径。
        • 将文件复制到 train_valid 目录下相应的标签子目录。
        • 如果该标签的已复制样本数小于 n_valid_per_label,则将文件复制到 valid 目录;否则,复制到 train 目录。
      • 更新 label_count 字典。
    • 返回值:返回每个类别在验证集中的样本数 n_valid_per_label

这些函数使用了 osshutil 模块来处理文件和目录操作,以及 collectionsmath 模块来进行计数和数学计算。copyfile 函数是 reorg_train_valid 函数的一个辅助函数,用于复制文件。

下面的reorg_test函数用来[在预测期间整理测试集,以方便读取]。

#@save
def reorg_test(data_dir):
    """在预测期间整理测试集,以方便读取"""
    for test_file in os.listdir(os.path.join(data_dir, 'test')):
        copyfile(os.path.join(data_dir, 'test', test_file),
                 os.path.join(data_dir, 'train_valid_test', 'test',
                              'unknown'))

最后,我们使用一个函数来[调用前面定义的函数]read_csv_labelsreorg_train_validreorg_test

def reorg_cifar10_data(data_dir, valid_ratio):
    labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
    reorg_train_valid(data_dir, labels, valid_ratio)
    reorg_test(data_dir)

在这里,我们只将样本数据集的批量大小设置为32。 在实际训练和测试中,应该使用Kaggle竞赛的完整数据集,并将batch_size设置为更大的整数,例如128。 我们将10%的训练样本作为调整超参数的验证集。

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)

[图像增广]

我们使用图像增广来解决过拟合的问题。例如在训练中,我们可以随机水平翻转图像。 我们还可以对彩色图像的三个RGB通道执行标准化。 下面,我们列出了其中一些可以调整的操作。

transform_train = gluon.data.vision.transforms.Compose([
    # 在高度和宽度上将图像放大到40像素的正方形
    gluon.data.vision.transforms.Resize(40),
    # 随机裁剪出一个高度和宽度均为40像素的正方形图像,
    # 生成一个面积为原始图像面积0.64~1倍的小正方形,
    # 然后将其缩放为高度和宽度均为32像素的正方形
    gluon.data.vision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),
                                                   ratio=(1.0, 1.0)),
    gluon.data.vision.transforms.RandomFlipLeftRight(),
    gluon.data.vision.transforms.ToTensor(),
    # 标准化图像的每个通道
    gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                           [0.2023, 0.1994, 0.2010])])
  1. Resize:

    • gluon.data.vision.transforms.Resize(40): 将图像的高度和宽度放大或缩小到40像素,使其成为一个正方形。
  2. RandomResizedCrop:

    • gluon.data.vision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0), ratio=(1.0, 1.0)): 随机裁剪图像,生成一个面积为原始图像面积的64%到100%的小正方形。然后,将这个小正方形缩放到32x32像素的大小。ratio=(1.0, 1.0) 表示裁剪区域的纵横比将保持为1,即正方形。
  3. RandomFlipLeftRight:

    • gluon.data.vision.transforms.RandomFlipLeftRight(): 随机水平翻转图像,这增加了数据的多样性并有助于模型的泛化。
  4. ToTensor:

    • gluon.data.vision.transforms.ToTensor(): 将PIL图像或Numpy数组转换为torch.FloatTensor类型,并将图像的数值范围从[0, 255]归一化到[0.0, 1.0]。
  5. Normalize:

    • gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]): 标准化图像的每个通道,使用给定的均值 [0.4914, 0.4822, 0.4465] 和标准差 [0.2023, 0.1994, 0.2010]。这些值通常是ImageNet数据集的均值和标准差,但可以根据具体数据集进行调整。

transform_train 是通过 Compose 函数组合这些单独的变换步骤而成的,确保它们将按顺序应用于图像。这种类型的转换流程在数据加载和预处理阶段非常有用,特别是在使用 gluon.data.DataLoader 加载图像数据时。

在测试期间,我们只对图像执行标准化,以消除评估结果中的随机性。

transform_test = gluon.data.vision.transforms.Compose([
    gluon.data.vision.transforms.ToTensor(),
    gluon.data.vision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                           [0.2023, 0.1994, 0.2010])])

读取数据集

接下来,我们[读取由原始图像组成的数据集],每个样本都包括一张图片和一个标签。

train_ds, valid_ds, train_valid_ds, test_ds = [
    gluon.data.vision.ImageFolderDataset(
        os.path.join(data_dir, 'train_valid_test', folder))
    for folder in ['train', 'valid', 'train_valid', 'test']]

在训练期间,我们需要[指定上面定义的所有图像增广操作]。 当验证集在超参数调整过程中用于模型评估时,不应引入图像增广的随机性。 在最终预测之前,我们根据训练集和验证集组合而成的训练模型进行训练,以充分利用所有标记的数据。

train_iter, train_valid_iter = [gluon.data.DataLoader(
    dataset.transform_first(transform_train), batch_size, shuffle=True,
    last_batch='discard') for dataset in (train_ds, train_valid_ds)]

valid_iter = gluon.data.DataLoader(
    valid_ds.transform_first(transform_test), batch_size, shuffle=False,
    last_batch='discard')

test_iter = gluon.data.DataLoader(
    test_ds.transform_first(transform_test), batch_size, shuffle=False,
    last_batch='keep')

变量定义:

  • train_iter: 训练数据的迭代器。
  • train_valid_iter: 训练和验证数据的迭代器(如果有的话)。
  • valid_iter: 验证数据的迭代器。
  • test_iter: 测试数据的迭代器。
  • batch_size: 每个批次加载的样本数量,这个变量在代码中没有直接定义,应该在外部定义好。

训练数据迭代器 (train_iter 和 train_valid_iter):

  • 使用列表推导式创建两个迭代器。对于 train_ds 和 train_valid_ds 数据集,应用了 transform_train 变换流程。
  • dataset.transform_first(transform_train): 将 transform_train 变换应用到数据集的第一个元素,即图像数据。
  • shuffle=True: 在每个epoch开始时对数据进行洗牌。
  • last_batch='discard': 如果最后一个批次的样本数量少于 batch_size,则丢弃这个批次。

验证数据迭代器 (valid_iter):

  • 使用 valid_ds 数据集,应用 transform_test 变换流程。
  • shuffle=False: 不对验证数据进行洗牌,因为验证集通常不需要洗牌。
  • last_batch='discard': 同上,丢弃样本数量不足的最后一个批次。

测试数据迭代器 (test_iter):

  • 使用 test_ds 数据集,应用 transform_test 变换流程。
  • shuffle=False: 测试集同样不需要洗牌。
  • last_batch='keep': 与训练和验证不同,测试集通常会保留最后一个不足 batch_size 的批次,以确保所有样本都被评估。

定义[模型]

在这里,我们基于HybridBlock类构建剩余块

class Residual(nn.HybridBlock):
    def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
        super(Residual, self).__init__(**kwargs)
        self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,
                               strides=strides)
        self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
                                   strides=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm()
        self.bn2 = nn.BatchNorm()

    def hybrid_forward(self, F, X):
        Y = F.npx.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        return F.npx.relu(Y + X)

类定义和构造函数:

  • class Residual(nn.HybridBlock): 定义了一个继承自 nn.HybridBlock 的类,这意味着这个块可以在图的编译模式下运行,也可以在命令式模式下运行。
  • def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs): 构造函数接受以下参数:
    • num_channels: 卷积层的通道数。
    • use_1x1conv: 一个布尔值,指示是否使用1x1卷积来匹配通道数和降低维度。
    • strides: 卷积层的步长。
    • **kwargs: 其他关键字参数,用于传递给父类 nn.HybridBlock

成员变量:

  • self.conv1: 第一个卷积层,使用3x3的卷积核,填充为1,步长由构造函数参数 strides 决定。
  • self.conv2: 第二个卷积层,也是3x3的卷积核,填充为1。
  • self.conv3: 可选的1x1卷积层,仅当 use_1x1conv 为 True 时创建,用于匹配通道数或降低维度。
  • self.bn1 和 self.bn2: 两个批量归一化层,用于归一化卷积层的输出。

前向传播方法:

  • def hybrid_forward(self, F, X): 定义了块的前向传播逻辑。F 是一个函数接口,用于执行所需的操作,X 是输入数据。
    • Y = F.npx.relu(self.bn1(self.conv1(X))): 应用第一个卷积层,批量归一化,然后进行ReLU激活函数。
    • Y = self.bn2(self.conv2(Y)): 应用第二个卷积层和批量归一化。
    • if self.conv3:: 如果存在1x1卷积层,则对输入 X 应用这个卷积层。
    • return F.npx.relu(Y + X): 将经过两个卷积层的输出 Y 和可能经过1x1卷积的输入 X 相加,然后应用ReLU激活函数作为最终输出。

使用示例:

这个残差单元可以作为构建更深层次网络的组件。例如,在构建一个残差网络时,可以在网络中堆叠多个这样的残差单元,并通过调整 num_channelsuse_1x1convstrides 参数来控制网络的深度和宽度。

接下来,我们定义Resnet-18模型。

def resnet18(num_classes):
    net = nn.HybridSequential()
    net.add(nn.Conv2D(64, kernel_size=3, strides=1, padding=1),
            nn.BatchNorm(), nn.Activation('relu'))

    def resnet_block(num_channels, num_residuals, first_block=False):
        blk = nn.HybridSequential()
        for i in range(num_residuals):
            if i == 0 and not first_block:
                blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
            else:
                blk.add(Residual(num_channels))
        return blk

    net.add(resnet_block(64, 2, first_block=True),
            resnet_block(128, 2),
            resnet_block(256, 2),
            resnet_block(512, 2))
    net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes))
    return net

函数定义:

  • def resnet18(num_classes): 定义了一个函数,接受 num_classes 参数,表示输出类别的数量。

网络构建:

  • net = nn.HybridSequential(): 创建一个 HybridSequential 模型,这是一个容器,可以顺序添加多个神经网络层。

初始层:

  • net.add(...): 向模型中添加初始层,包括一个卷积层、批量归一化层和激活层。

残差块定义:

  • def resnet_block(...): 定义了一个内部函数,用于创建残差块的序列。每个残差块由多个 Residual 单元组成。
    • num_channels: 每个残差单元的通道数。
    • num_residuals: 每个残差块中的残差单元数量。
    • first_block: 指示是否是第一个残差块,如果是,则使用步长为2的1x1卷积来降低特征图的维度。

残差块添加:

  • 通过调用 resnet_block 函数,向模型中添加了四个残差块序列,每个序列的通道数依次翻倍,分别为 64、128、256 和 512。

全局平均池化和分类层:

  • net.add(nn.GlobalAvgPool2D(), nn.Dense(num_classes)): 在残差块之后,添加全局平均池化层和全连接层(分类层),其中全连接层的输出维度为 num_classes

返回值:

  • return net: 返回构建好的 ResNet-18 模型。

在训练开始之前我们使用Xavier初始化。

def get_net(devices):
    num_classes = 10
    net = resnet18(num_classes)
    net.initialize(ctx=devices, init=init.Xavier())
    return net

loss = gluon.loss.SoftmaxCrossEntropyLoss()

get_net 函数:

  • def get_net(devices): 定义了一个函数,接受 devices 参数,这个参数应该是一个设备列表,例如 [gpu(0)][cpu()],用于指定模型的运行设备。

  • num_classes = 10: 定义了输出类别的数量,这里设置为10,意味着模型的输出层将有10个神经元。

  • net = resnet18(num_classes): 调用之前定义的 resnet18 函数来创建一个 ResNet-18 模型。

  • net.initialize(ctx=devices, init=init.Xavier()): 使用 Xavier 初始化方法初始化模型的参数。ctx 参数指定了初始化参数的设备上下文,以确保参数在正确的设备上创建和初始化。

  • return net: 返回初始化好的模型。

损失函数:

  • loss = gluon.loss.SoftmaxCrossEntropyLoss(): 定义了一个 Softmax Cross-Entropy 损失函数,这是多分类问题中常用的损失函数。

定义[训练函数]

我们将根据模型在验证集上的表现来选择模型并调整超参数。 下面我们定义了模型训练函数train

def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    trainer = gluon.Trainer(net.collect_params(), 'sgd',
                            {'learning_rate': lr, 'momentum': 0.9, 'wd': wd})
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss', 'train acc']
    if valid_iter is not None:
        legend.append('valid acc')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    for epoch in range(num_epochs):
        metric = d2l.Accumulator(3)
        if epoch > 0 and epoch % lr_period == 0:
            trainer.set_learning_rate(trainer.learning_rate * lr_decay)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(
                net, features, labels.astype('float32'), loss, trainer,
                devices, d2l.split_batch)
            metric.add(l, acc, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[2],
                              None))
        if valid_iter is not None:
            valid_acc = d2l.evaluate_accuracy_gpus(net, valid_iter,
                                                   d2l.split_batch)
            animator.add(epoch + 1, (None, None, valid_acc))
    measures = (f'train loss {metric[0] / metric[2]:.3f}, '
                f'train acc {metric[1] / metric[2]:.3f}')
    if valid_iter is not None:
        measures += f', valid acc {valid_acc:.3f}'
    print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')

函数定义:

  • def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period, lr_decay): 定义了一个训练函数,接受模型、训练数据迭代器、验证数据迭代器、训练轮数、学习率、权重衰减、设备列表、学习率衰减周期和衰减率作为参数。

初始化和配置:

  • trainer: 使用SGD优化器创建一个 gluon.Trainer 实例,设置了学习率、动量和权重衰减。
  • num_batches: 计算训练迭代器中的批次总数。
  • timer: 创建一个 d2l.Timer 实例,用于测量训练和评估的时间。
  • legend: 定义了动画器图例,根据是否有验证迭代器,可能包含训练损失、训练准确率和验证准确率。
  • animator: 使用 d2l.Animator 创建一个动画器,用于可视化训练过程。

训练循环:

  • 外层循环遍历 num_epochs 指定的训练轮数。
  • 如果当前epoch是学习率衰减周期的整数倍,则更新学习率。
  • 内层循环遍历训练迭代器中的所有批次。
  • 使用 d2l.train_batch_ch13 函数来训练一个批次的数据,并计算损失和准确率。
  • 更新动画器,显示训练进度和性能指标。
  • 如果有验证迭代器,使用 d2l.evaluate_accuracy_gpus 函数评估验证集上的准确率,并更新动画器。

性能输出:

  • 在每个epoch结束时,打印出训练损失、训练准确率和(如果有的话)验证准确率。
  • 计算并打印出模型在训练过程中处理的样本数的速度。

注意事项:

  • 这段代码中使用了一些自定义函数和类,如 d2l.Accumulatord2l.train_batch_ch13 和 d2l.evaluate_accuracy_gpus,它们可能来自 "Dive into Deep Learning" 的代码库。
  • d2l.split_batch 函数可能用于将数据分发到多个GPU上。
  • devices 参数应该是一个设备列表,用于指定模型应该在哪些设备上运行。
  • lr_period 和 lr_decay 参数用于实现学习率衰减策略。

[训练和验证模型]

现在,我们可以训练和验证模型了,而以下所有超参数都可以调整。 例如,我们可以增加周期的数量。当lr_periodlr_decay分别设置为4和0.9时,优化算法的学习速率将在每4个周期乘以0.9。 为便于演示,我们在这里只训练20个周期。

devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 0.02, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net(devices)
net.hybridize()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)

在 MXNet 中,net.hybridize() 是一个方法调用,用于启用混合编程模式,这是 MXNet 的一个特性,允许模型在图的编译模式下运行以提高性能。当你调用 hybridize 方法后,网络的每个块(block)都会转换为图的节点,并且网络的前向传播和后向传播都会被编译成高效的执行图。

以下是 net.hybridize() 方法的一些关键点:

  • 启用混合模式:调用 hybridize() 后,网络将尝试使用图的编译模式来执行前向和后向传播。这通常可以提高计算性能,因为编译后的图可以优化内存访问模式和执行速度。

  • 对现有模型的影响:一旦网络被混合化,所有已经定义的层和操作都将按照图的编译模式执行。这意味着在调用 hybridize() 之后添加到网络中的层将不会被编译。

  • 使用条件:混合模式在某些情况下可以提供显著的性能提升,特别是在网络结构固定且使用相同输入尺寸进行多次前向传播时。然而,如果网络结构在运行时动态变化,或者输入尺寸经常变化,混合模式可能不会带来性能提升。

  • 调用时机:通常在模型定义完成并且初始化之后,但在开始训练循环之前调用 net.hybridize()

  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值