数字图像处理(12): 形态学处理——图像腐蚀与图像膨胀

本文主要介绍了基于Python和OpenCV的数字图像处理中的形态学操作,重点讲解了图像腐蚀和膨胀。形态学处理针对二值图像,图像腐蚀类似“邻域被蚕食”,用erode()函数;图像膨胀是腐蚀逆操作,类似“领域扩张”,用dilate()函数,二者都需卷积核和迭代次数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1 形态学操作

2 图像腐蚀

3 图像膨胀

参考资料


1 形态学操作

形态学morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构。这里,我们使用同一词语表示数学形态学的内容,将数学形态学作为工具从图像中提取表达和描绘区域形状的有用图像分量,如边界、骨架和凸壳等。

形态学处理主要针对的是二值图像(0或1)。

形态学通常使用图像腐蚀图像膨胀两个操作,这些操作是形态学处理的基础。


 

2 图像腐蚀

作为{​{Z}^{2}}中的集合AB,表示为A\ominus BBA的腐蚀定义为:

                                                                              A\ominus B=\left\{ z\left| {​{(B)}_{z}}\subseteq A \right. \right\}

上式表示图像A用卷积模板B来进行腐蚀处理,通过模板B与图像A进行卷积计算,得出B覆盖区域的像素点最小值,并用这个最小值来替代参考点的像素值。如图所示,将左边的原始图像A腐蚀处理为右边的效果图A\ominus B

 

图像腐蚀的效果如下图所示:

 

图像腐蚀类似于“邻域被蚕食”,将图像中的高亮区域或白色部分进行缩减细化,其运行结果图比原图的高亮区域更小。其主要包括两个输入对象:

(1) 二值图像

(2 )卷积核

 

卷积核是腐蚀中的关键数组,采用numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,腐蚀的过程如下图所示:

被扫描到的原始图像中的像素点,只有当卷积核对应的元素值均为1时,其值才为1,否则其值修改为0。换句话说,遍历到的黄色点位置,其周围全部是白色,保留白色,否则变为黑色,图像腐蚀变小。如下图所示:

 

图像腐蚀主要使用的函数为 erode(),其函数形式如下:

dst = cv2.erode(src, kernel, iterations)

其中,参数:

dst 表示处理的结果;

src 表示原图像;

kernel 表示卷积核;

iterations 表示迭代次数。

注:迭代次数默认是1,表示进行一次腐蚀,也可以根据需要进行多次迭代,进行多次腐蚀。

例如:下图表示5\times5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

 

(1)卷积核大小为5\times5 ,迭代次数为1

代码如下所示:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread('test1.bmp', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((5,5), np.uint8)

#图像腐蚀处理
erosion = cv2.erode(src, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", erosion)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 

 

(2)卷积核大小为5\times5,迭代次数为9

代码如下所示:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread('test1.bmp', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((5,5), np.uint8)

#图像腐蚀处理
erosion = cv2.erode(src, kernel,iterations=10)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", erosion)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 

(2)卷积核大小为39\times39,迭代次数为1

代码如下所示:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread('test1.bmp', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((39,39), np.uint8)

#图像腐蚀处理
erosion = cv2.erode(src, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", erosion)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 


3 图像膨胀

作为{​{Z}^{2}}中的集合AB,表示为A\oplus BBA膨胀定义为:

                                                                        A\oplus B=\left\{ z\left| {​{(\widehat{B})}_{z}}\bigcap{A\ne \varnothing } \right. \right\}

图像膨胀是腐蚀操作的逆操作,类似于“领域扩张”,将图像中的高亮区域或白色部分进行扩张,其运行结果图比原图的高亮区域更大,线条变粗了,主要用于去噪。

(1) 图像被腐蚀后,去除了噪声,但是会压缩图像。

(2) 对腐蚀过的图像,进行膨胀处理,可以去除噪声,并且保持原有形状。

它也包括两个输入对象:

(1)二值图像或原始图像

(2)卷积核

图像膨胀的效果如下图所示:

 

卷积核是腐蚀中的关键数组,采用numpy库可以生成。卷积核的中心点逐个像素扫描原始图像,如下图所示:

 

 

被扫描到的原始图像中的像素点,当卷积核对应的元素值只要有一个为1时,其值就为1,否则为0

 

图像膨胀主要使用的函数为 dilate(),其函数用法如下所示:

dst = cv2.dilate(src, kernel, iterations)

其中,参数:

dst 表示处理的结果;

src 表示原始图像;

kernel 表示卷积核;

iterations 表示迭代次数。

注:迭代次数默认是1,表示进行一次膨胀,也可根据需要进行多次迭代,进行多次膨胀。通常进行1次膨胀即可。

例如,下图表示5\times5的卷积核,可以采用函数 np.ones((5,5), np.uint8) 构建。

 

(1)卷积核大小为3\times3 ,迭代次数为1

代码如下所示:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread('test2.bmp', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((3,3), np.uint8)

#图像膨胀处理
erosion = cv2.dilate(src, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", erosion)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 

(1)卷积核大小为5\times5 ,迭代次数为1

代码如下所示:

#encoding:utf-8
import cv2
import numpy as np

#读取图片
src = cv2.imread('test2.bmp', cv2.IMREAD_UNCHANGED)

#设置卷积核
kernel = np.ones((5,5), np.uint8)

#图像膨胀处理
erosion = cv2.dilate(src, kernel)

#显示图像
cv2.imshow("src", src)
cv2.imshow("result", erosion)

#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

 

运行结果如下图所示:

 


 

参考资料

[1] https://blog.csdn.net/Eastmount/article/details/83581277

[2] Python+OpenCV图像处理

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TechArtisan6

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值