一、HMM模型的学习问题(Baum-Welch算法)
(1) Baum-Welch算法介绍
HMM的学习算法Baum-Welch(也称为EM算法)是一种无监督学习算法,用于从观测序列中估计HMM模型的参数,包括初始概率向量、状态转移概率矩阵和观测概率矩阵。
Baum-Welch算法的主要步骤如下:
【1】初始化:随机初始化HMM模型的参数,包括初始概率向量、状态转移概率矩阵和发射概率矩阵(即观测矩阵B)。
【2】E步骤(Expectation):对于每个观测序列,使用前向-后向算法计算前向概率矩阵alpha和后向概率矩阵beta。
【3】M步骤(Maximization):利用E步骤中计算得到的前向概率矩阵alpha、后向概率矩阵beta以及观测序列,更新HMM模型的参数。
- 更新初始概率向量pi:根据alpha和beta计算得到的gamma矩阵。
- 更新状态转移概率矩阵A:根据alpha、beta和观测序列计算得到的xi矩阵。
- 更新发射概率矩阵B:根据alpha、beta和观测序列计算得到的gamma矩阵。
【4】重复步骤2和3,直到收敛或达到最大迭代次数。
在E步骤中,利用前向-后向算法计算前向概率矩阵alpha和后向概率矩阵beta。前向概率alpha表示在给定模型参数和观测序列的条件下,到达每个时间步和隐藏状态的路径的概率。后向概率beta表示在给定模型参数和观测序列的条件下,从每个时间步和隐藏状态出发,到达观测序列结束的路径的概率。
在M步骤中,根据E步骤中计算得到的前向概率矩阵alpha、后向概率矩阵beta以及观测序列,利用各种计算公式更新HMM模型的参数。通过不断迭代E步骤和M步骤,逐渐优化模型参数,使得模型能够更好地解释观测序列。
Baum-Welch算法是一种经典的HMM学习算法,它利用了观测序列中的信息来估计模型参数,从而提高了HMM模型的拟合能力。然而,Baum-Welch算法可能会陷入局部最优解,并且对于有多个局部最优解的情况,无法保证找到全局最优解。因此,在实际应用中,可能需要多次运行Baum-Welch算法以选择最优的模型参数。
(2) Baum-Welch算法推导过程介绍
为了让有基础的读者进一步了解Baum-Welch算法,为了他们的学术研究乃至创新需要,笔者给大家查找了该算法推导过程的资料,以方便读者参考。
输入:给定训练数据只包含观测序列,而没有对应的状态序列
输出:学习HMM模型λ = (π, A, B)的参数
学习方法:参数的学习可以由EM算法来实现
步骤-1:确定对数似然函数
步骤-2:EM算法的E步
步骤-3:EM算法的M步
步骤4:求初始概率向量π
步骤-5:求状态转移矩阵A
步骤-6:求观测概率分布矩阵B
(3) Baum-Welch算法案例-天气预测
我们以天气预报案例为例,假设有三种天气状态:晴天(Sunny)、多云(Cloudy)和雨天(Rainy),以及两种观测结果:干燥(Dry)和湿润(Wet)。我们收集了7天的天气数据,如下所示:
天气状态:Sunny, Sunny, Cloudy, Rainy, Rainy, Cloudy, Sunny
观测结果:Dry, Wet, Wet, Dry, Wet, Wet, Dry
注释:S表示晴天,C表示多云,R表示雨天;D表示干燥,W表示湿润。
代码实现:
import numpy as np
def baum_welch(obs, n_states, n_obs):
# 初始化参数
start_prob = np.ones(n_states) / n_states # 初始状态