1. 利用 3Dslicer 软件提取影像组学特征
- 安装插件:SlicerRadiomics
- 导入影像文件:breast1_label.nrrd(mask 文件) 和 breast1_image.nrrd(个人影像文件)。
- 切换插件:Welcome to Slicer → Informatics → Radiomics
- 设置参数(如图):
◆ Select Input Volume and Segmentation
input image Volume
: breast1_image(个人影像文件)
input regions
感兴趣区:breast1_label(mask 文件)
◆ Extraction Customization:Manual Custimization
Featrue Classes
选择提取哪些类特征,如 firstorder 和 gldm
Resampling and Filtering
重采样 →Resampled voxel size
:3,3,3(体素与体素间的距离都是 3mm,建议每个方向上的体素间隔一致)→LoG kernel sizes
: 3,4 (如果使用高斯拉布拉斯滤波器,需要设置一下,可以设置多个 size)。勾选Wavelet-based features
(是否提取小波滤波器的特征)
其他默认
◆ output
output table
: Table1 (修改输出表格名),设置表格名称后Apply
。
- Apply 后窗口右下角产生一个表格:
Image type
:原始图像还是某种滤波器上产生的图片,前面 diagnostics 是影像的基本信息,从 log-sigma-3-0-mm-3D 开始是对特征提取有用的信息(log 滤波器,sigma size 3.0)。
Feature class
:特征分类
- 导出表格:格式选择
csv
。
- 做影像组学研究时通常把病例作为行,特征作为列,所以需要把 csv 表格转置一下用于后续研究:全选数据 → 到新表粘贴时选择转置。
2. 利用 python 提取影像组学特征
-
基础版:提取一个病例的特征
需要先安装pyradiomics
参考:【影像组学】windows系统安装pyradiomics包的问题# pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyradiomics from radiomics import featureextractor imageFile = &#