【影像组学】用3Dslicer或Python提取影像组学特征

本文介绍了如何利用3Dslicer软件和Python进行影像组学特征提取。在3Dslicer中,通过安装SlicerRadiomics插件,设置输入体积和感兴趣区,调整参数进行特征提取。在Python环境下,安装pyradiomics库,对病例进行单例和批量处理,提取影像特征。对于3Dslicer,特征信息存储于表格,需转置用于后续研究;Python提取的特征则更加灵活。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


1. 利用 3Dslicer 软件提取影像组学特征

  1. 安装插件:SlicerRadiomics
  2. 导入影像文件:breast1_label.nrrd(mask 文件) 和 breast1_image.nrrd(个人影像文件)。
    在这里插入图片描述
  3. 切换插件:Welcome to Slicer → Informatics → Radiomics
    在这里插入图片描述
  4. 设置参数(如图)
    Select Input Volume and Segmentation
    input image Volume: breast1_image(个人影像文件)
    input regions 感兴趣区:breast1_label(mask 文件)
    Extraction Customization:Manual Custimization
    Featrue Classes 选择提取哪些类特征,如 firstorder 和 gldm
    Resampling and Filtering 重采样 → Resampled voxel size:3,3,3(体素与体素间的距离都是 3mm,建议每个方向上的体素间隔一致)→ LoG kernel sizes: 3,4 (如果使用高斯拉布拉斯滤波器,需要设置一下,可以设置多个 size)。勾选 Wavelet-based features(是否提取小波滤波器的特征)
    其他默认
    output
    output table: Table1 (修改输出表格名),设置表格名称后 Apply
    在这里插入图片描述
  5. Apply 后窗口右下角产生一个表格
    Image type:原始图像还是某种滤波器上产生的图片,前面 diagnostics 是影像的基本信息,从 log-sigma-3-0-mm-3D 开始是对特征提取有用的信息(log 滤波器,sigma size 3.0)。
    Feature class:特征分类
    在这里插入图片描述
  6. 导出表格:格式选择 csv
    在这里插入图片描述
  7. 做影像组学研究时通常把病例作为行,特征作为列,所以需要把 csv 表格转置一下用于后续研究:全选数据 → 到新表粘贴时选择转置。
    在这里插入图片描述
    在这里插入图片描述

2. 利用 python 提取影像组学特征

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值