线性代数基本定理(核空间与行空间)——The Fundamental Theorem of Linear Algebra

本文依据Nicholas Hoell的讲义The Fundamental Theorem of Linear Algebra翻译,水平有限,如有不当欢迎指正。

一、预备知识:正交补空间

1.1 正交补空间的定义

对于一个 n n n维子空间 S ⊆ R n S\subseteq \mathbb{R}^n SRn, 顾名思义,它的正交补空间(orthogonal complement)里的每一个向量都和 S S S中的列向量正交。
S S S的正交补空间为 S ⊥ ⊆ R n S^\perp \subseteq \mathbb{R}^n SRn,它由列向量 v ∈ R n v\in \mathbb{R}^n vRn构成,要求 v v v S S S中的所有向量都正交。则 S ⊥ S^\perp S可以用数学语言描述为:
S ⊥ = { v ∈ R n ∣ u ⋅ v = 0 , u ∈ S } S^\perp=\lbrace v\in\mathbb{R}^n|u\cdot v=0,u\in S\rbrace S={vRnuv=0,uS}
正交补空间也可以简称为“正交补”。

1.2 表示定理

v ∈ R n v\in\mathbb{R}^n vRn表示任意一个 n n n维向量, S ⊆ R n S\subseteq\mathbb{R}^n SRn,那么存在 s ∈ S s\in S sS s ⊥ ∈ S ⊥ s_\perp\in S^\perp sS,使得
v = s + s ⊥ v=s+s_\perp v=s+s
即,任意一个 n n n维向量可以表示为两个 n n n维向量的和:其中一个属于 n n n维空间的一个子空间,另一个属于这个子空间的正交补空间。

证明:
R n \mathbb{R}^n Rn的每个子空间 S S S都有自己的基,所以也有标准正交基(这个标准正交基可以由任意一组基得到,例如使用施密特正交化和标准化等方法),因此, S S S空间中的一个向量 s s s可以表示为:
s = ( v ⋅ s 1 ) s 1 + ( v ⋅ s 2 ) s 2 + . . . + ( v ⋅ s d i m ( S ) ) s d i m ( S ) s=(v\cdot s_1)s_1+(v\cdot s_2)s_2+...+(v\cdot s_{dim(S)})s_{dim(S)} s=(vs1)s1+(vs2)s2+...+(vsdim(S))sdim(S)
其中, s 1 , s 2 , . . . , s d i m ( S ) s_1, s_2, ..., s_{dim(S)} s1,s2,...,sdim(S) S S S的一个标准正交基,易知它们满足: ∣ ∣ s j ∣ ∣ = 1 且 s j ⋅ s i = 0 , i ≠ j ||s_j||=1且s_j\cdot s_i=0, i\ne j sj=1sjsi=0,i=j。因此可以构造:
( v − s ) ⋅ s = v ⋅ s − s ⋅ s = v ⋅ [ ( v ⋅ s 1 ) s 1 + ( v ⋅ s 2 ) s 2 + . . . + ( v ⋅ s d i m ( S ) ) s d i m ( S ) ] − [ ( v ⋅ s 1 ) 2 s 1 ⋅ s 1 + ( v ⋅ s 2 ) 2 s 2 ⋅ s 2 + . . . + ( v ⋅ s d i m ( S ) ) 2 s d i m ( S ) ⋅ s d i m ( S ) ] = ( v ⋅ s 1 ) 2 + ( v ⋅ s 2 ) 2 + . . . + ( v ⋅ s d i m ( S ) ) 2 − [ ( v ⋅ s 1 ) 2 + ( v ⋅ s 2 ) 2 + . . . + ( v ⋅ s d i m ( S ) ) 2 ] = 0 (v-s)\cdot s=v\cdot s-s\cdot s\\=v\cdot[(v\cdot s_1)s_1+(v\cdot s_2)s_2+...+(v\cdot s_{dim(S)})s_{dim(S)}]\\-[(v\cdot s_1)^2s_1\cdot s_1+(v\cdot s_2)^2s_2\cdot s_2+...+(v\cdot s_{dim(S)})^2s_{dim(S)}\cdot s_{dim(S)}]\\=(v\cdot s_1)^2+(v\cdot s_2)^2+...+(v\cdot s_{dim(S)})^2\\-[(v\cdot s_1)^2+(v\cdot s_2)^2+...+(v\cdot s_{dim(S)})^2]\\=0 (vs)s=vsss=v[(vs1)s1+(vs2)s2+...+(vsdim(S))sdim(S)][(vs1)2s1s1+(vs2)2s2s2+...+(vsdim(S))2sdim(S)sdim(S)]=(vs1)2+(vs2)2+...+(vsdim(S))2[(vs1)2+(vs2)2+...+(vsdim(S))2]=0
所以 ( v − s ) ⊥ s (v-s)\perp s (vs)s。利用这个关系,定义 s ⊥ = v − s s_\perp =v-s s=vs,这样就有 v = s + s ⊥ v=s+s_\perp v=s+s,且 s ⊥ ∈ S ⊥ s_\perp\in S^\perp sS

二、一个命题

A A A m × n m\times n m×n矩阵,则:
( c o l ( A T ) ) ⊥ = k e r ( A ) (col(A^T))^\perp=ker(A) (col(AT))=ker(A)
其中 c o l ( ⋅ ) col(\cdot) col()表示一个矩阵的列空间, k e r ( ⋅ ) ker(\cdot) ker()表示一个矩阵的核空间。
这个命题是线性代数基本定理的依据。

证明:
v ∈ k e r ( A ) v\in ker(A) vker(A),则
A v = ( 0 0 ⋮ 0 ) = ( r o w 1 ( A ) ⋅ v r o w 2 ( A ) ⋅ v ⋮ r o w m ( A ) ⋅ v ) Av=\begin{pmatrix}0\\0\\\vdots\\0\end{pmatrix}=\begin{pmatrix}row_1(A)\cdot v\\row_2(A)\cdot v\\\vdots\\row_m(A)\cdot v\end{pmatrix} Av=000=row1(A)vrow2(A)vrowm(A)v
其中 r o w i ( A ) row_i(A) rowi(A)表示 A A A的第 i i i个行向量。所以 v ⊥ r o w i ( A ) , i = 1 , 2 , . . . , m v\perp row_i(A),i=1,2,...,m vrowi(A),i=1,2,...,m,所以 v ∈ ( r o w ( A ) ) ⊥ = ( c o l ( A T ) ) ⊥ v\in (row(A))^\perp=(col(A^T))^\perp v(row(A))=(col(AT)) r o w ( A ) row(A) row(A)表示 A A A的行向量生成的空间。由于这个结论对所有的 v v v都成立,因此 k e r ( A ) ⊆ ( c o l ( A T ) ) ⊥ ker(A)\subseteq (col(A^T))^\perp ker(A)(col(AT))。同理,如果 v ∈ ( c o l ( A T ) ) ⊥ v\in (col(A^T))^\perp v(col(AT)),则必有
v ⋅ r o w i ( A ) = 0 , i = 1 , 2 , . . . , m v\cdot row_i(A)=0, i=1,2,...,m vrowi(A)=0,i=1,2,...,m
因此 v ∈ k e r ( A ) v\in ker(A) vker(A)。由于这个结论对所有 v v v都成立,所以 ( c o l ( A T ) ) ⊥ ⊆ k e r ( A ) (col(A^T))^\perp\subseteq ker(A) (col(AT))ker(A)
所以 k e r ( A ) = ( c o l ( A T ) ) ⊥ ker(A)=(col(A^T))^\perp ker(A)=(col(AT))

根据上面的内容,我们也可以顺便得到另一个重要性质:
S = ( S ⊥ ) ⊥ S=(S^\perp)^\perp S=(S)

证明:
如果 v ∈ ( S ⊥ ) ⊥ v\in (S^\perp)^\perp v(S),则 v ⋅ s ⊥ = 0 v\cdot s_\perp=0 vs=0对所有 s ⊥ ∈ S ⊥ s_\perp\in S^\perp sS都成立。设 S S S S ⊥ S^\perp S的标准正交基分别为 { s 1 , . . . , s d i m ( S ) } \{s_1,...,s_{dim(S)}\} {s1,...,sdim(S)} { s 1 ⊥ , s 2 ⊥ , . . . , s d i m ( S ) ⊥ } \{s_1^\perp,s_2^\perp,...,s_{dim(S)}^\perp\} {s1,s2,...,sdim(S)},则有:
v = ( v ⋅ s 1 ) s 1 + ( v ⋅ s 2 ) s 2 + . . . + ( v ⋅ s d i m ( S ) ) s d i m ( S ) + ( v ⋅ s 1 ⊥ ) s 1 ⊥ + ( v ⋅ s 2 ⊥ ) s 2 ⊥ + . . . + ( v ⋅ s d i m ( S ) ⊥ ) s d i m ( S ) ⊥ = ( v ⋅ s 1 ) s 1 + ( v ⋅ s 2 ) s 2 + . . . + ( v ⋅ s d i m ( S ) ) s d i m ( S ) v=(v\cdot s_1)s_1+(v\cdot s_2)s_2+...+(v\cdot s_{dim(S)})s_{dim(S)}\\+(v\cdot s_1^\perp)s_1^\perp+(v\cdot s_2^\perp)s_2^\perp+...+(v\cdot s_{dim(S)}^\perp)s_{dim(S)}^\perp\\=(v\cdot s_1)s_1+(v\cdot s_2)s_2+...+(v\cdot s_{dim(S)})s_{dim(S)} v=(vs1)s1+(vs2)s2+...+(vsdim(S))sdim(S)+(vs1)s1+(vs2)s2+...+(vsdim(S))sdim(S)=(vs1)s1+(vs2)s2+...+(vsdim(S))sdim(S)
既然 v v v可以用 S S S的基表示,那么 v ∈ S v\in S vS。由于这个结论对所有 v v v都成立,所以 ( S ⊥ ) ⊥ ⊆ S (S^\perp)^\perp\subseteq S (S)S。另一方面,对于 s ∈ S s\in S sS,由于 s ⋅ s ⊥ = 0 s\cdot s_\perp=0 ss=0,所以 s ∈ ( S ⊥ ) ⊥ s\in(S^\perp)^\perp s(S)。由于这个结论对所有 s ⊥ s_\perp s都成立,所以 s ⊆ ( S ⊥ ) ⊥ s\subseteq(S^\perp)^\perp s(S)
所以 S = ( S ⊥ ) ⊥ S=(S^\perp)^\perp S=(S)

三、线性代数基本定理

在此基础上,介绍线性代数基本定理:
A A A m × n m\times n m×n矩阵,则
c o l ( A T ) = ( k e r ( A ) ) ⊥ col(A^T)=(ker(A))^\perp col(AT)=(ker(A))
因此,
R n = k e r ( A ) ⊕ c o l ( A T ) = k e r ( A ) ⊕ r o w ( A ) \mathbb{R}^n=ker(A)\oplus col(A^T)=ker(A)\oplus row(A) Rn=ker(A)col(AT)=ker(A)row(A)
其中 ⊕ \oplus 这个符号称为“direct sum”(直和)。可见, n n n维空间被分为了两部分: A A A的核空间与行空间。
这个定理有什么意义呢?
对于方程
A x = b Ax=b Ax=b
如果 b ∈ c o l ( A ) b\in col(A) bcol(A),这个方程是有解的。根据这个定理,我们可以将解表示为
x = p + v h x=p+v_h x=p+vh
其中 p ∈ r o w ( A ) p\in row(A) prow(A) A p = b Ap=b Ap=b的特解,而 v h ∈ k e r ( A ) v_h\in ker(A) vhker(A)为核空间( A x = 0 Ax=0 Ax=0)内的通解。矩阵的零化度描述了 A x = b Ax=b Ax=b缺乏唯一可解性。

四、该定理的应用

这个定理可以用于证明最小二乘解的存在性,见:
如何证明ATAX=ATB一定有解?

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

故人西迁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值