线性代数之 线性变换,正交补与直和

线性代数之 线性变换,正交补与直和

前言

本篇补充一下之前线性代数里的线性变换的含义,以及向量空间的正交补与直和的定义。

线性变换

之前矩阵乘法的本质中谈到,矩阵乘法的本质是线性变换,但是没有说明什么是线性变换。

线性变换类似于函数,实际上就是一种向量的映射关系:给定向量空间 V ⊂ R n , W ⊂ R m V\subset R^n,W\subset R^m VRn,WRm,对于任意 x ∈ V x\in V xV,如果存在一个映射 T , T ( x ) = y ∈ W T,T(x)=y\in W T,T(x)=yW y y y唯一,并且存在线性关系 T ( u + v ) = T ( u ) + T ( v ) , T ( k u ) = k T ( u ) T(u+v)=T(u)+T(v),T(ku)=kT(u) T(u+v)=T(u)+T(v),T(ku)=kT(u),则把 T T T称为 V , W V,W V,W上的一个线性变换。

上面这个定义比较抽象,可以联想函数是定义域与值域上的映射,而线性变换就是两个向量子空间上的映射,并且满足线性要求。

矩阵乘法就是一种线性变换。矩阵与线性变换的关系可以通过一个例子表示:
向 量 在 标 准 基 下 的 坐 标 可 表 示 为 [ 2 3 ] = [ 1 0 0 1 ] [ 2 3 ] = 2 [ 1 0 ] + 3 [ 0 1 ] 矩 阵 乘 法 可 以 看 作 将 标 准 基 变 换 后 , 向 量 的 坐 标 [ 1 2 1 0 ] [ 2 3 ] = 2 [ 1 1 ] + 3 [ 2 0 ] = [ 7 2 ] 向量在标准基下的坐标可表示为 \\ \quad \\ \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0& 1 \\ \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2\begin{bmatrix} 1 \\ 0 \\ \end{bmatrix} +3\begin{bmatrix} 0 \\ 1 \\ \end{bmatrix} \\ \quad \\ 矩阵乘法可以看作将标准基变换后,向量的坐标 \\ \quad \\ \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 2\begin{bmatrix} 1 \\ 1 \end{bmatrix} +3\begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 7 \\ 2 \\ \end{bmatrix} [23]=[1001][23]=2[10]+3[01][1120][23]=2[11]+3[20]=[72]
将矩阵的列看作是向量空间的一组基,那么矩阵乘法实际上就是基的线性组合。

正交补与直和

向量空间中,定义向量正交:对于 x , y ∈ R n , < x , y > = 0 x,y\in R^n,<x,y>=0 x,yRn,<x,y>=0,称向量 x , y x,y x,y相互正交,记为 x ⊥ y x\bot y xy

定义向量与集合正交:对于 x ∈ R n , M ⊆ R n , ∀ y ∈ M , < x , y > = 0 x\in R^n,M\subseteq R^n,\forall y\in M,<x,y>=0 xRn,MRn,yM,<x,y>=0,称 x , M x,M x,M正交,记为 x ⊥ W x\bot W xW

定义集合与集合正交:对于集合 M , N ⊆ R n , ∀ x ∈ M , y ∈ N , < x , y > = 0 M,N\subseteq R^n,\forall x\in M, y\in N,<x,y>=0 M,NRn,xM,yN,<x,y>=0,称集合 M , N M,N M,N正交,记为 M ⊥ N M\bot N MN

定义直和:对于子空间 V , W ⊆ R n , x ∈ V + W V,W\subseteq R^n,x\in V+W V,WRn,xV+W存在唯一的 x 1 ∈ V , x 2 ∈ W , x = x 1 + x 2 x_1\in V, x_2\in W,x=x_1+x_2 x1V,x2W,x=x1+x2,称 V + W V+W V+W是直和。

直和性质: R n R^n Rn中的子空间 V ∩ W = { 0 ⃗ } V\cap W=\{\vec 0\} VW={0 },则 V + M V+M V+M是直和。

定义正交补1:对于子空间 V ⊆ R n , V ⊥ = { x ∈ R n : x ⊥ V } V\subseteq R^n,V^\bot=\{x\in R^n:x\bot V \} VRn,V={xRn:xV},称 V ⊥ V^\bot V是子空间 V V V R n R^n Rn中的正交补。

通过直和定义正交补2:对于 R n R^n Rn中的子空间 V , W , V ⊥ W , V + W = R n , V ∩ W = { 0 ⃗ } V,W,V\bot W,V+W=R^n, V\cap W=\{\vec 0\} V,W,VW,V+W=Rn,VW={0 },称 V V V W W W互为正交补,记为 V ⊥ = W , W ⊥ = V V^\bot=W,W^\bot =V V=W,W=V,称直和 V + W = R n V+W=R^n V+W=Rn R n R^n Rn正交直和分解

正交补定理:对于 R n R^n Rn中任何一个子空间 V V V,都存在唯一的正交补 V ⊥ V^\bot V V V V V ⊥ V^\bot V的直和为 R n R^n Rn

后记

本篇只是一个定义,后续还会涉及到希尔伯特空间等内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值