【树结构】实际应用 —— 堆排序、哈夫曼树、二叉排序树、平衡二叉树(AVL树)

本文详细介绍了四种数据结构及其排序算法:堆排序通过构建大顶堆实现升序排序,哈夫曼树用于数据压缩,二叉排序树保证了数据的有序性,而AVL树作为平衡二叉搜索树,确保了查询效率。文章通过实例展示了每种结构的构建、操作和应用,包括堆排序的步骤、哈夫曼树的构建过程、二叉排序树的插入和删除以及AVL树的平衡调整。
摘要由CSDN通过智能技术生成

一、堆排序

1、堆排序基本介绍
  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
  2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆,注意∶没有要求结点的左孩子的值和右孩子的值的大小关系。
  3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
  4. 大顶堆举例说明
    在这里插入图片描述
  5. 小顶堆举例说明
    在这里插入图片描述
  6. 一般升序采用大顶堆,降序采用小顶堆
2、堆排序基本思想
  1. 将待排序序列构造成一个大顶堆。
  2. 此时,整个序列的最大值就是堆顶的根节点。
  3. 将其与末尾元素进行交换,此时末尾就为最大值。
  4. 然后将剩余 n-1 个元素重新构造成一个堆,这样会得到 n 个元素的次小值。如此反复执行,便能得到一个有序
    序列了。

可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了。

3、堆排序步骤图解说明

要求:给你一个数组 { 4, 6, 8, 5, 9 },要求使用堆排序法,将数组升序排序。

步骤一:构造初始堆。将给定无序序列构造成一个大顶堆(一般升序采用大顶堆,降序采用小顶堆)。
原始的数组 [ 4, 6, 8, 5, 9 ]

  1. 假设给定无序序列结构如下
    在这里插入图片描述
  2. 此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点 arr.length/2-1=5/2-1=1,也就是 6 结点),从左至右,从下至上进行调整。
    在这里插入图片描述
  3. 找到第二个非叶节点 4,由于 [ 4, 9, 8 ] 中 9 元素最大,4 和 9 交换。
    在这里插入图片描述
  4. 这时,交换导致了子根 [ 4, 5, 6 ] 结构混乱,继续调整,[ 4, 5, 6 ]中 6 最大,交换 4 和 6。
    在这里插入图片描述
    此时,我们就将一个无序序列构造成了一个大顶堆。

步骤二:将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与末尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。

  1. 将堆顶元素 9 和末尾元素 4 进行交换
    在这里插入图片描述
  2. 重新调整结构,使其继续满足堆定义
    在这里插入图片描述
  3. 再将堆顶元素 8 与末尾元素 5 进行交换,得到第二大元素 8
    在这里插入图片描述
  4. 后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
    在这里插入图片描述

简单总结下堆排序的基本思路:

  1. 将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
  2. 将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  3. 重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整、交换步骤, 直到整个序列有序。
4、堆排序代码实现

要求:给一个数组 { 4, 6, 8, 5, 9 },要求使用堆排序法,将数组升序排序。

说明:堆排序的速度非常快,在我的机器上 8百万 数据平均 3 秒左右。O(nlogn)

public class HeapSort {

	public static void main(String[] args) {
		//要求将数组进行升序排序
		//int arr[] = {4, 6, 8, 5, 9};
		// 创建要给80000个的随机的数组
		int[] arr = new int[8000000];
		for (int i = 0; i < 8000000; i++) {
			arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
		}

		System.out.println("排序前");
		Date data1 = new Date();
		SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
		String date1Str = simpleDateFormat.format(data1);
		System.out.println("排序前的时间是=" + date1Str);
		
		heapSort(arr);
		
		Date data2 = new Date();
		String date2Str = simpleDateFormat.format(data2);
		System.out.println("排序后的时间是=" + date2Str);
		//System.out.println("排序后=" + Arrays.toString(arr));
	}

	//编写一个堆排序的方法
	public static void heapSort(int arr[]) {
		int temp = 0;
		System.out.println("堆排序!!");
		
//		//分步完成
//		adjustHeap(arr, 1, arr.length);
//		System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//		
//		adjustHeap(arr, 0, arr.length);
//		System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4
		
		//完成最终代码
		//将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
		for(int i = arr.length / 2 -1; i >=0; i--) {
			adjustHeap(arr, i, arr.length);
		}
		
		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  			3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整、交换步骤,直到整个序列有序。
		 */
		for(int j = arr.length-1;j >0; j--) {
			//交换
			temp = arr[j];
			arr[j] = arr[0];
			arr[0] = temp;
			adjustHeap(arr, 0, j); 
		}
		
		//System.out.println("数组=" + Arrays.toString(arr)); 
		
	}
	
	//将一个数组(二叉树), 调整成一个大顶堆
	/**
	 * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
	 * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
	 * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
	 * @param arr 待调整的数组
	 * @param i 表示非叶子结点在数组中索引
	 * @param lenght 表示对多少个元素继续调整, length 是在逐渐的减少
	 */
	public  static void adjustHeap(int arr[], int i, int lenght) {
		
		int temp = arr[i];//先取出当前元素的值,保存在临时变量
		//开始调整
		//说明
		//1. k = i * 2 + 1 k 是 i结点的左子结点
		for(int k = i * 2 + 1; k < lenght; k = k * 2 + 1) {
			if(k+1 < lenght && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
				k++; // k 指向右子结点
			}
			if(arr[k] > temp) { //如果子结点大于父结点
				arr[i] = arr[k]; //把较大的值赋给当前结点
				i = k; //!!! i 指向 k,继续循环比较
			} else {
				break;//!
			}
		}
		//当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
		arr[i] = temp;//将temp值放到调整后的位置
	}
	
}

在这里插入图片描述

二、哈夫曼树

1、基本介绍
  1. 给定 n 个权值作为 n 个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree),还有的书翻译为霍夫曼树。
  2. 赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近
2、哈夫曼树几个重要概念和举例说明
  1. 路径和路径长度: 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为 1,则从根结点到第 L 层结点的路径长度为 L-1
  2. 结点的权及带权路径长度: 若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权
  3. 结点的带权路径长度: 从根结点到该结点之间的路径长度与该结点的权的乘积
  4. 树的带权路径长度: 树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted pathlength) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
  5. WPL最小的就是赫夫曼树
    在这里插入图片描述
3、哈夫曼树创建思路图解

给一个数列 { 13, 7, 8, 3, 29, 6, 1},要求转成一颗哈夫曼树。

构成赫夫曼树的步骤:

  1. 从小到大进行排序,将每一个数据,每个数据都是一个节点,每个节点可以看成是一颗最简单的二叉树
  2. 取出根节点权值最小的两颗二叉树
  3. 组成一颗新的二叉树,该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
  4. 再将这颗新的二叉树,以根节点的权值大小再次排序,不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树
    在这里插入图片描述
public class HuffmanTree {

	public static void main(String[] args) {
		int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		
		//测试一把
		preOrder(root); //
		
	}
	
	//编写一个前序遍历的方法
	public static void preOrder(Node root) {
		if(root != null) {
			root.preOrder();
		}else{
			System.out.println("是空树,不能遍历~~");
		}
	}

	// 创建赫夫曼树的方法
	/**
	 * 
	 * @param arr 需要创建成哈夫曼树的数组
	 * @return 创建好后的赫夫曼树的root结点
	 */
	public static Node createHuffmanTree(int[] arr) {
		// 第一步为了操作方便
		// 1. 遍历 arr 数组
		// 2. 将arr的每个元素构成成一个Node
		// 3. 将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
			nodes.add(new Node(value));
		}
		
		//我们处理的过程是一个循环的过程
		
		
		while(nodes.size() > 1) {
		
			//排序 从小到大 
			Collections.sort(nodes);
			
			System.out.println("nodes =" + nodes);
			
			//取出根节点权值最小的两颗二叉树 
			//(1) 取出权值最小的结点(二叉树)
			Node leftNode = nodes.get(0);
			//(2) 取出权值第二小的结点(二叉树)
			Node rightNode = nodes.get(1);
			
			//(3)构建一颗新的二叉树
			Node parent = new Node(leftNode.value + rightNode.value);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//(4)从ArrayList删除处理过的二叉树
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//(5)将parent加入到nodes
			nodes.add(parent);
		}
		
		//返回哈夫曼树的root结点
		return nodes.get(0);
		
	}
}

// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
	int value; // 结点权值
	char c; //字符
	Node left; // 指向左子结点
	Node right; // 指向右子结点

	//写一个前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	
	public Node(int value) {
		this.value = value;
	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	@Override
	public int compareTo(Node o) {
		// TODO Auto-generated method stub
		// 表示从小到大排序
		return this.value - o.value;
	}

}

在这里插入图片描述

三、二叉排序树

1、二叉排序树介绍

二叉排序树:BST(Binary Sort(Search)Tree),对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
在这里插入图片描述

比如数据 ( 7, 3, 10, 12, 5, 1, 9 ),对应的二叉排序树为:
在这里插入图片描述

2、二叉排序树创建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树,比如:数组为 Array( 7, 3, 10, 12, 5, 1, 9 ),创建成对应的二叉排序树为∶
在这里插入图片描述
在这里插入图片描述

3、二叉排序树的删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

  1. 删除叶子节点(比如: 2, 5, 9, 12)
  2. 删除只有一颗子树的节点(比如: 1)
  3. 删除有两颗子树的节点.(比如: 7, 3, 10)
  4. 操作的思路分析

第一种情况: 删除叶子节点(比如: 2, 5, 9, 12)
思路:

  1. 需求先去找到要删除的结点 targetNode
  2. 找到 targetNode 的父结点 parent
  3. 确定 targetNode 是 parent 的左子结点还是右子结点
  4. 根据前面的情况来对应删除
    左子结点 parent.left = null;
    右子结点 parent.right = null;

第二种情况: 删除只有一颗子树的节点 比如 1
思路:

  1. 需求先去找到要删除的结点 targetNode
  2. 找到 targetNode 的父结点 parent
  3. 确定 targetNode 的子结点是左子结点还是右子结点
  4. targetNode 是 parent 的左子结点还是右子结点
  5. 如果 targetNode 有左子结点
    5.1 如果 targetNode 是 parent 的左子结点 parent.left = targetNode.left;
    5.2 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.left;
  6. 如果 targetNode 有右子结点
    6.1 如果 targetNode 是 parent 的左子结点 parent.left = targetNode.right;
    6.2 如果 targetNode 是 parent 的右子结点 parent.right = targetNode.right;

第三种情况: 删除有两颗子树的节点 (比如: 7, 3, 10 )
思路:

  1. 需求先去找到要删除的结点 targetNode
  2. 找到 targetNode 的父结点 parent
  3. 从 targetNode 的右子树找到最小的结点
  4. 用一个临时变量,将最小结点的值保存
  5. 删除该最小结点
  6. targetNode.value = temp
4、二叉排序树删除结点的代码实现
public class BinarySortTreeDemo {

	public static void main(String[] args) {
		int[] arr = {7, 3, 10, 12, 5, 1, 9, 2};
		BinarySortTree binarySortTree = new BinarySortTree();
		//循环的添加结点到二叉排序树
		for(int i = 0; i< arr.length; i++) {
			binarySortTree.add(new Node(arr[i]));
		}
		
		//中序遍历二叉排序树
		System.out.println("中序遍历二叉排序树~");
		binarySortTree.infixOrder(); // 1, 3, 5, 7, 9, 10, 12
		
		//测试一下删除叶子结点
	    
	   
	    binarySortTree.delNode(12);
	   
	 
	    binarySortTree.delNode(5);
	    binarySortTree.delNode(10);
	    binarySortTree.delNode(2);
	    binarySortTree.delNode(3);
		   
	    binarySortTree.delNode(9);
	    binarySortTree.delNode(1);
	    binarySortTree.delNode(7);
	    
		
		System.out.println("root=" + binarySortTree.getRoot());
		
		
		System.out.println("删除结点后");
		binarySortTree.infixOrder();
	}

}

//创建二叉排序树
class BinarySortTree {
	private Node root;
	
	
	
	
	public Node getRoot() {
		return root;
	}

	//查找要删除的结点
	public Node search(int value) {
		if(root == null) {
			return null;
		} else {
			return root.search(value);
		}
	}
	
	//查找父结点
	public Node searchParent(int value) {
		if(root == null) {
			return null;
		} else {
			return root.searchParent(value);
		}
	}
	
	//编写方法: 
	//1. 返回的 以node 为根结点的二叉排序树的最小结点的值
	//2. 删除node 为根结点的二叉排序树的最小结点
	/**
	 * 
	 * @param node 传入的结点(当做二叉排序树的根结点)
	 * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
	 */
	public int delRightTreeMin(Node node) {
		Node target = node;
		//循环的查找左子节点,就会找到最小值
		while(target.left != null) {
			target = target.left;
		}
		//这时 target就指向了最小结点
		//删除最小结点
		delNode(target.value);
		return target.value;
	}
	
	
	//删除结点
	public void delNode(int value) {
		if(root == null) {
			return;
		}else {
			//1.需求先去找到要删除的结点  targetNode
			Node targetNode = search(value);
			//如果没有找到要删除的结点
			if(targetNode == null) {
				return;
			}
			//如果我们发现当前这颗二叉排序树只有一个结点
			if(root.left == null && root.right == null) {
				root = null;
				return;
			}
			
			//去找到targetNode的父结点
			Node parent = searchParent(value);
			//如果要删除的结点是叶子结点
			if(targetNode.left == null && targetNode.right == null) {
				//判断targetNode 是父结点的左子结点,还是右子结点
				if(parent.left != null && parent.left.value == value) { //是左子结点
					parent.left = null;
				} else if (parent.right != null && parent.right.value == value) {//是由子结点
					parent.right = null;
				}
			} else if (targetNode.left != null && targetNode.right != null) { //删除有两颗子树的节点
				int minVal = delRightTreeMin(targetNode.right);
				targetNode.value = minVal;
				
				
			} else { // 删除只有一颗子树的结点
				//如果要删除的结点有左子结点 
				if(targetNode.left != null) {
					if(parent != null) {
						//如果 targetNode 是 parent 的左子结点
						if(parent.left.value == value) {
							parent.left = targetNode.left;
						} else { //  targetNode 是 parent 的右子结点
							parent.right = targetNode.left;
						} 
					} else {
						root = targetNode.left;
					}
				} else { //如果要删除的结点有右子结点 
					if(parent != null) {
						//如果 targetNode 是 parent 的左子结点
						if(parent.left.value == value) {
							parent.left = targetNode.right;
						} else { //如果 targetNode 是 parent 的右子结点
							parent.right = targetNode.right;
						}
					} else {
						root = targetNode.right;
					}
				}
				
			}
			
		}
	}
	
	//添加结点的方法
	public void add(Node node) {
		if(root == null) {
			root = node;//如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}
	//中序遍历
	public void infixOrder() {
		if(root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}

//创建Node结点
class Node {
	int value;
	Node left;
	Node right;
	public Node(int value) {
		
		this.value = value;
	}
	
	
	//查找要删除的结点
	/**
	 * 
	 * @param value 希望删除的结点的值
	 * @return 如果找到返回该结点,否则返回null
	 */
	public Node search(int value) {
		if(value == this.value) { //找到就是该结点
			return this;
		} else if(value < this.value) {//如果查找的值小于当前结点,向左子树递归查找
			//如果左子结点为空
			if(this.left  == null) {
				return null;
			}
			return this.left.search(value);
		} else { //如果查找的值不小于当前结点,向右子树递归查找
			if(this.right == null) {
				return null;
			}
			return this.right.search(value);
		}
		
	}
	//查找要删除结点的父结点
	/**
	 * 
	 * @param value 要找到的结点的值
	 * @return 返回的是要删除的结点的父结点,如果没有就返回null
	 */
	public Node searchParent(int value) {
		//如果当前结点就是要删除的结点的父结点,就返回
		if((this.left != null && this.left.value == value) || 
				(this.right != null && this.right.value == value)) {
			return this;
		} else {
			//如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
			if(value < this.value && this.left != null) {
				return this.left.searchParent(value); //向左子树递归查找
			} else if (value >= this.value && this.right != null) {
				return this.right.searchParent(value); //向右子树递归查找
			} else {
				return null; // 没有找到父结点
			}
		}
		
	}
	
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}


	//添加结点的方法
	//递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if(node == null) {
			return;
		}
		
		//判断传入的结点的值,和当前子树的根结点的值关系
		if(node.value < this.value) {
			//如果当前结点左子结点为null
			if(this.left == null) {
				this.left = node;
			} else {
				//递归的向左子树添加
				this.left.add(node);
			}
		} else { //添加的结点的值大于 当前结点的值
			if(this.right == null) {
				this.right = node;
			} else {
				//递归的向右子树添加
				this.right.add(node);
			}
			
		}
	}
	
	//中序遍历
	public void infixOrder() {
		if(this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if(this.right != null) {
			this.right.infixOrder();
		}
	}
	
}

四、平衡二叉树(AVL树)

1、基本介绍
  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为 AVL 树,可以保证查询效率较高。
  2. 具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过 1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
  3. 举例说明
    在这里插入图片描述
2、应用案例 - 单旋转(左旋转)
  1. 要求:给一个数列,创建出对应的平衡二叉树,数列 { 4, 3, 6, 5, 7, 8 }
  2. 思路分析(示意图)
    在这里插入图片描述
	//左旋转方法
	private void leftRotate() {
		
		//创建新的结点,以当前根结点的值
		Node newNode = new Node(value);
		//把新的结点的左子树设置成当前结点的左子树
		newNode.left = left;
		//把新的结点的右子树设置成带你过去结点的右子树的左子树
		newNode.right = right.left;
		//把当前结点的值替换成右子结点的值
		value = right.value;
		//把当前结点的右子树设置成当前结点右子树的右子树
		right = right.right;
		//把当前结点的左子树(左子结点)设置成新的结点
		left = newNode;		
	}
3、应用案例 - 单旋转(右旋转)
  1. 要求:给一个数列,创建出对应的平衡二叉树,数列 { 10, 12, 8, 9, 7, 6 }
  2. 思路分析(示意图)
    在这里插入图片描述
	//右旋转
	private void rightRotate() {
		Node newNode = new Node(value);
		newNode.right = right;
		newNode.left = left.right;
		value = left.value;
		left = left.left;
		right = newNode;
	}
4、应用案例 - 双旋转

前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成平衡二叉树的转换。比如数列
int [ ] arr = { 10, 11, 7, 6, 8, 9}; 运行原来的代码可以看到,并没有转成AVL树。
int [ ] arr = { 2, 1, 6, 5, 7, 3 }; 运行原来的代码可以看到,并没有转成AVL树

问题分析:
在这里插入图片描述
解决思路分析:

  1. 当符号右旋转的条件时
  2. 如果它的左子树的右子树高度大于它的左子树的高度
  3. 先对当前这个结点的左节点进行左旋转
  4. 在对当前结点进行右旋转的操作即可

完整代码:(在二叉排序树代码上扩展的)

public class AVLTreeDemo {

	public static void main(String[] args) {
		//int[] arr = {4,3,6,5,7,8};
		//int[] arr = { 10, 12, 8, 9, 7, 6 };
		int[] arr = { 10, 11, 7, 6, 8, 9 };  
		//创建一个 AVLTree对象
		AVLTree avlTree = new AVLTree();
		//添加结点
		for(int i=0; i < arr.length; i++) {
			avlTree.add(new Node(arr[i]));
		}
		
		//遍历
		System.out.println("中序遍历");
		avlTree.infixOrder();
		
		System.out.println("在平衡处理~~");
		System.out.println("树的高度=" + avlTree.getRoot().height()); //3
		System.out.println("树的左子树高度=" + avlTree.getRoot().leftHeight()); // 2
		System.out.println("树的右子树高度=" + avlTree.getRoot().rightHeight()); // 2
		System.out.println("当前的根结点=" + avlTree.getRoot());//8
		
		
	}

}

// 创建AVLTree
class AVLTree {
	private Node root;

	public Node getRoot() {
		return root;
	}

	// 查找要删除的结点
	public Node search(int value) {
		if (root == null) {
			return null;
		} else {
			return root.search(value);
		}
	}

	// 查找父结点
	public Node searchParent(int value) {
		if (root == null) {
			return null;
		} else {
			return root.searchParent(value);
		}
	}

	// 编写方法:
	// 1. 返回的 以node 为根结点的二叉排序树的最小结点的值
	// 2. 删除node 为根结点的二叉排序树的最小结点
	/**
	 * 
	 * @param node
	 *            传入的结点(当做二叉排序树的根结点)
	 * @return 返回的 以node 为根结点的二叉排序树的最小结点的值
	 */
	public int delRightTreeMin(Node node) {
		Node target = node;
		// 循环的查找左子节点,就会找到最小值
		while (target.left != null) {
			target = target.left;
		}
		// 这时 target就指向了最小结点
		// 删除最小结点
		delNode(target.value);
		return target.value;
	}

	// 删除结点
	public void delNode(int value) {
		if (root == null) {
			return;
		} else {
			// 1.需求先去找到要删除的结点 targetNode
			Node targetNode = search(value);
			// 如果没有找到要删除的结点
			if (targetNode == null) {
				return;
			}
			// 如果我们发现当前这颗二叉排序树只有一个结点
			if (root.left == null && root.right == null) {
				root = null;
				return;
			}

			// 去找到targetNode的父结点
			Node parent = searchParent(value);
			// 如果要删除的结点是叶子结点
			if (targetNode.left == null && targetNode.right == null) {
				// 判断targetNode 是父结点的左子结点,还是右子结点
				if (parent.left != null && parent.left.value == value) { // 是左子结点
					parent.left = null;
				} else if (parent.right != null && parent.right.value == value) {// 是由子结点
					parent.right = null;
				}
			} else if (targetNode.left != null && targetNode.right != null) { // 删除有两颗子树的节点
				int minVal = delRightTreeMin(targetNode.right);
				targetNode.value = minVal;

			} else { // 删除只有一颗子树的结点
				// 如果要删除的结点有左子结点
				if (targetNode.left != null) {
					if (parent != null) {
						// 如果 targetNode 是 parent 的左子结点
						if (parent.left.value == value) {
							parent.left = targetNode.left;
						} else { // targetNode 是 parent 的右子结点
							parent.right = targetNode.left;
						}
					} else {
						root = targetNode.left;
					}
				} else { // 如果要删除的结点有右子结点
					if (parent != null) {
						// 如果 targetNode 是 parent 的左子结点
						if (parent.left.value == value) {
							parent.left = targetNode.right;
						} else { // 如果 targetNode 是 parent 的右子结点
							parent.right = targetNode.right;
						}
					} else {
						root = targetNode.right;
					}
				}

			}

		}
	}

	// 添加结点的方法
	public void add(Node node) {
		if (root == null) {
			root = node;// 如果root为空则直接让root指向node
		} else {
			root.add(node);
		}
	}

	// 中序遍历
	public void infixOrder() {
		if (root != null) {
			root.infixOrder();
		} else {
			System.out.println("二叉排序树为空,不能遍历");
		}
	}
}

// 创建Node结点
class Node {
	int value;
	Node left;
	Node right;

	public Node(int value) {

		this.value = value;
	}

	// 返回左子树的高度
	public int leftHeight() {
		if (left == null) {
			return 0;
		}
		return left.height();
	}

	// 返回右子树的高度
	public int rightHeight() {
		if (right == null) {
			return 0;
		}
		return right.height();
	}

	// 返回 以该结点为根结点的树的高度
	public int height() {
		return Math.max(left == null ? 0 : left.height(), right == null ? 0 : right.height()) + 1;
	}
	
	//左旋转方法
	private void leftRotate() {
		
		//创建新的结点,以当前根结点的值
		Node newNode = new Node(value);
		//把新的结点的左子树设置成当前结点的左子树
		newNode.left = left;
		//把新的结点的右子树设置成带你过去结点的右子树的左子树
		newNode.right = right.left;
		//把当前结点的值替换成右子结点的值
		value = right.value;
		//把当前结点的右子树设置成当前结点右子树的右子树
		right = right.right;
		//把当前结点的左子树(左子结点)设置成新的结点
		left = newNode;		
	}
	
	//右旋转
	private void rightRotate() {
		Node newNode = new Node(value);
		newNode.right = right;
		newNode.left = left.right;
		value = left.value;
		left = left.left;
		right = newNode;
	}

	// 查找要删除的结点
	/**
	 * 
	 * @param value
	 *            希望删除的结点的值
	 * @return 如果找到返回该结点,否则返回null
	 */
	public Node search(int value) {
		if (value == this.value) { // 找到就是该结点
			return this;
		} else if (value < this.value) {// 如果查找的值小于当前结点,向左子树递归查找
			// 如果左子结点为空
			if (this.left == null) {
				return null;
			}
			return this.left.search(value);
		} else { // 如果查找的值不小于当前结点,向右子树递归查找
			if (this.right == null) {
				return null;
			}
			return this.right.search(value);
		}

	}

	// 查找要删除结点的父结点
	/**
	 * 
	 * @param value
	 *            要找到的结点的值
	 * @return 返回的是要删除的结点的父结点,如果没有就返回null
	 */
	public Node searchParent(int value) {
		// 如果当前结点就是要删除的结点的父结点,就返回
		if ((this.left != null && this.left.value == value) || (this.right != null && this.right.value == value)) {
			return this;
		} else {
			// 如果查找的值小于当前结点的值, 并且当前结点的左子结点不为空
			if (value < this.value && this.left != null) {
				return this.left.searchParent(value); // 向左子树递归查找
			} else if (value >= this.value && this.right != null) {
				return this.right.searchParent(value); // 向右子树递归查找
			} else {
				return null; // 没有找到父结点
			}
		}

	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	// 添加结点的方法
	// 递归的形式添加结点,注意需要满足二叉排序树的要求
	public void add(Node node) {
		if (node == null) {
			return;
		}

		// 判断传入的结点的值,和当前子树的根结点的值关系
		if (node.value < this.value) {
			// 如果当前结点左子结点为null
			if (this.left == null) {
				this.left = node;
			} else {
				// 递归的向左子树添加
				this.left.add(node);
			}
		} else { // 添加的结点的值大于 当前结点的值
			if (this.right == null) {
				this.right = node;
			} else {
				// 递归的向右子树添加
				this.right.add(node);
			}

		}
		
		//当添加完一个结点后,如果: (右子树的高度-左子树的高度) > 1 , 左旋转
		if(rightHeight() - leftHeight() > 1) {
			//如果它的右子树的左子树的高度大于它的右子树的右子树的高度
			if(right != null && right.leftHeight() > right.rightHeight()) {
				//先对右子结点进行右旋转
				right.rightRotate();
				//然后在对当前结点进行左旋转
				leftRotate(); //左旋转..
			} else {
				//直接进行左旋转即可
				leftRotate();
			}
			return ; //必须要!!!
		}
		
		//当添加完一个结点后,如果 (左子树的高度 - 右子树的高度) > 1, 右旋转
		if(leftHeight() - rightHeight() > 1) {
			//如果它的左子树的右子树高度大于它的左子树的高度
			if(left != null && left.rightHeight() > left.leftHeight()) {
				//先对当前结点的左结点(左子树)->左旋转
				left.leftRotate();
				//再对当前结点进行右旋转
				rightRotate();
			} else {
				//直接进行右旋转即可
				rightRotate();
			}
		}
	}

	// 中序遍历
	public void infixOrder() {
		if (this.left != null) {
			this.left.infixOrder();
		}
		System.out.println(this);
		if (this.right != null) {
			this.right.infixOrder();
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玳宸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值