【Python实现】Smith-Waterman算法快速计算序列相似性

本文介绍了Smith-Waterman算法的基本原理,重点讨论了如何利用Cython进行Python和C语言混合编程,以解决大规模序列比对的计算速度问题。通过ssw_aligner项目实例,展示了如何使用该工具进行高效本地配对,并提供了基准测试和输入要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 SW算法介绍

  Smith-Waterman 算法是由 Temple F. Smith 和 Michael S. Waterman 两人在 1981 年提出来的,是 Needleman-Wunsch 算法的改良版,通过算法的比对,能获取到局部最优解。具体的算法这里不做过多解释,详见参考文献[1]。本文关注的主要问题是,计算速度的问题。尽管网上有很多SW算法的实现,有Java、Python和R包。然而,当在计算大量的序列相似性时,以上代码的实现会非常的慢,甚至需要月余。如果使用C语言实现代码,效果非常明显但是可扩展性不高。考虑到以上两个因素,Python下的Cython库是一个非常好的实现方式,可以实现Python和C语言的混合编程。

2 ssw_aligner环境配置

### Dependencies
- [numpy==1.12.0](http://www.numpy.org/)
- [Cython==0.28.3](https://cython.org/)

3 项目安装地址

https://github.com/mbreese/swalign

4 项目实例

from ssw_aligner import local_pairwise_align_ssw

query_seq = 'TTTTTAAAAA'
target_seq = 'GGGGTTTT'
alignment = local_pairwise_align_ssw(query_seq,
                                     target_seq,
                                     gap_open_penalty=11,
                                     gap_extend_penalty=1,
                                     match_score=2,
                                     mismatch_score=-3)

# get score
alignment.optimal_alignment_score

# get query start, end
alignment.query_begin
alignment.query_end

# get target start, end
alignment.target_begin
alignment.target_end_optimal

# get aligned sequence
alignment.aligned_query_sequence
alignment.aligned_target_sequence

# get cigar infomation
alignment.cigar

# check whether the index starts from 0 or not
alignment.is_zero_based()

# make the index start from n(0 or 1)
alignment.set_zero_based(0) # start from 0
alignment.set_zero_based(1) # start from 1

4.1Benchmark script:

import random
import time

from skbio import DNA
import skbio
import swalign
import ssw_aligner


match = 2
mismatch = -1
scoring = swalign.NucleotideScoringMatrix(match, mismatch)
sw = swalign.LocalAlignment(scoring)

bases = ['A', 'T', 'C', 'G']
def generate_gene(length):
    return ''.join([random.choice(bases) for i in range(0, length)])


def benchmark(align_func):
    start = time.time()
    for i in range(0, 100):
        for seq_length in range(100, 2000, 500):
            seq1, seq2 = generate_gene(seq_length), generate_gene(seq_length)
            align_func(seq1, seq2)
    return time.time() - start

4.2 Input should be DNA type

def benchmark_skbio(align_func):
    start = time.time()
    for i in range(0, 100):
        for seq_length in range(100, 2000, 500):
            seq1, seq2 = generate_gene(seq_length), generate_gene(seq_length)
            align_func(DNA(seq1), DNA(seq2))
    return time.time() - start


print('ssw_aligner')
ssw_aligner_time = benchmark(ssw_aligner.local_pairwise_align_ssw)
print(ssw_aligner_time)

print('skbio')
skbio_time = benchmark_skbio(skbio.alignment.local_pairwise_align_ssw)
print(skbio_time)

print('swalign')
swalign_time = benchmark(sw.align)
print(swalign_time)

5 参考文献

[1]生物信息学(2)——双序列比对之Smith-Waterman(SW)算法详解

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值