图像拼接IEEE trans——Multi-Viewpoint Panorama Construction With Wide-Baseline Images Images

简介

文章源自IEEE TRANSACTIONS ON IMAGE PROCESSING
在这篇论文中,我们提出了一种用于广角基线图像的拼接方法。我们的主要贡献是采用基于网格的框架,结合各种项来优化图像对齐。引入了一种新颖的尺度保持项,使得对齐几乎平行于图像平面,同时仍允许进行局部透视校正。一种新的接缝切割模型减少了由于难以处理传统接缝切割算法[8],[9]中的误对齐而引起的视觉伪影。图1展示了一个具有挑战性的城市场景示例,其中包含了14张在不同位置拍摄的图像。我们生成的全景图具有视觉吸引力。

1.主要工作

1.特征匹配后离群点剔除
2.网格优化,设计了新的约束项
3.接缝生成,在传统的色差的基础上添加了对准误差作为约束项

2.离群点剔除

对于每个特征点,我们假设在它的局部区域有一个平面,所以所有的邻居都近似在同一个平面上。对于任意两个特征点,当其距离小于 r r r时,我们将其视为相邻点。我们使用DLT[29]对所有相邻特征对应拟合一个单应性,并计算残差。如果误差小于阈值γ,我们将其标记为内线。在我们的实验中,我们一般设 R R R = 50, γ γ γ = 5。
在这里插入图片描述

3.网格优化

target图进行网格化,顶点索引:
V = [ x 1 y 1 x 2 y 2 … x m y m ] ⊤ V=\left[\begin{array}{lllllll} x_1 & y_1 & x_2 & y_2 & \ldots & x_m & y_m \end{array}\right]^{\top} V=[x1y1x2y2xmym]
总的能量函数如下:
E ( V ) = E A ( V ) + λ R E R ( V ) + λ S E S ( V ) + E X ( V ) E(V)=E_A(V)+\lambda_R E_R(V)+\lambda_S E_S(V)+E_X(V) E(V)=EA(V)+λRER(V)+λSES(V)+EX(V)
其中
E A ( V ) E_A(V) EA(V)为对齐项,强制相应的特征点被弯曲到相同的位置。
E R ( V ) E_R(V) ER(V)是正则化项,鼓励相邻的顶点进行相似的变换。
E S ( V ) E_S(V) ES(V)为尺度项,防止图像尺度变化较大。
λ R λ_R λR λ S λ_S λS是权值,在我们的系统中通常设为1。
E X ( V ) E_X(V) EX(V)是一个可选的额外约束,用于更强的正则化。

3.1 Feature Alignment —— E A ( V ) E_A(V) EA(V)

在这里插入图片描述

将每个特征点表示为四个外围控制顶点的加权和,并使所有特征点的对齐误差最小化。与[16]类似,我们使用双线性插值计算原始网格上的权值,相当于重心表示。
表达式如下: w 1 = ( v 3 x − p x ) ( v 3 y − p y ) , w 2 = ( p x − v 4 x ) ( v 4 y − p y ) , w 3 = ( p x − v 1 x ) ( p y − v 1 y ) , w 4 = ( v 2 x − p x ) ( p y − v 2 y ) . \begin{aligned} & w_1=\left(v_{3 x}-p_x\right)\left(v_{3 y}-p_y\right), \\ & w_2=\left(p_x-v_{4 x}\right)\left(v_{4 y}-p_y\right), \\ & w_3=\left(p_x-v_{1 x}\right)\left(p_y-v_{1 y}\right), \\ & w_4=\left(v_{2 x}-p_x\right)\left(p_y-v_{2 y}\right) . \end{aligned} w1=(v3xpx)(v3ypy),w2=(pxv4x)(v4ypy),w3=(pxv1x)(pyv1y),w4=(v2xpx)(pyv2y).
这里我们基于这样一个假设:当网格较小时,对其进行透视投影变换时,可以近似看作仿射变换,即前面提到的权重是不变的。

对于target图上的点 p i p_i pi,以及reference图上与之匹配的点 p j p_j pj,在经过网格变形后这一对匹配点将投影到同一画布上得到 p i ∗ p_i^* pi q i ∗ q_i^* qi,我们希望的是他们两尽量重合,所以有了下面约束项:
E A ( V ) = ∑ ( p i , p j ) ∈ C 1 N p i , p j ∥ p i ∗ − q i ∗ ∥ 2 = ∑ ( p i , p j ) ∈ C 1 N p i , p j ∥ W i V − W j V ∥ 2 \begin{aligned} E_A(V) & =\sum_{\left(p_i, p_j\right) \in C} \frac{1}{N_{p_i, p_j}}\left\|p_i^*-q_i^*\right\|^2 \\ & =\sum_{\left(p_i, p_j\right) \in C} \frac{1}{N_{p_i, p_j}}\left\|W_i V-W_j V\right\|^2 \end{aligned} EA(V)=(pi,pj)CNpi,pj1piqi2=(pi,pj)CNpi,pj1WiVWjV2
其中 C C C是所有匹配对的集合

W i W_i Wi p i p_i pi的一个2m×2权值矩阵:
[ … w 1 0 … w 2 0 … w 3 0 … w 4 0 … … 0 w 1 … 0 w 2 … 0 w 3 … 0 w 4 … ] \left[\begin{array}{ccccccccccccc} \ldots & w_1 & 0 & \ldots & w_2 & 0 & \ldots & w_3 & 0 & \ldots & w_4 & 0 & \ldots \\ \ldots & 0 & w_1 & \ldots & 0 & w_2 & \ldots & 0 & w_3 & \ldots & 0 & w_4 & \ldots \end{array}\right] [w100w1w200w2w300w3w400w4]
W i T V W _i^T V WiTV则是 p i ∗ p_i^* pi的坐标 [ x , y ] T [x,y]^T [x,y]T
N p i , p j N_{p_i,p_j} Npi,pj是包含 p i , p j p_i,p_j pi,pj两个特征点的单元格所包含的特征点的总和。用于对不同区域的对齐误差进行归一化处理,防止特征丰富的网格支配对齐项

3.2 Regularization—— E R ( V ) E_R(V) ER(V)

对齐项只影响有特征点的网格。我们需要一个正则化项来将变换传播到其他区域。在[15]、[20]和[22]中,使用一个相似项来保持每个网格网格的形状。然而,这在我们的案例中并不奏效。对于全景拼接,强制相似性约束是不合理的,因为通常需要透视校正。在局部平面假设下,我们更倾向于使局部邻域具有相似同形性。
在这里插入图片描述
如图6所示,对于每个顶点 V 1 V_1 V1,我们用它的四个邻居 V 1 , V 2 , V 3 , V 4 V_1,V_2,V_3,V_4 V1,V2,V3,V4 以及它们的扭曲位置 V 1 ∗ , V 2 ∗ , V 3 ∗ , V 4 ∗ V_1^*,V_2^*,V_3^*,V_4^* V1,V2,V3,V4来估计一个局部单应性H。然后我们在顶点 V V V上应用 H H H来得到常规位置 V ′ V^{'} V我们最小化 V ′ V^{'} V与真实位置 V ∗ V^∗ V之间的欧几里德距离来定义优化项
但这里有个问题,就是逐个去求H,精度较低,时间代价也较高。所以这里我们再次使用仿射变换(affine transformation)近似H,即 A V = V ′ AV=V^{'} AV=V,我们不去求A,将其表示为邻居的加权和,即 ( v 1 ∗ + v 2 ∗ + v 3 ∗ + v 4 ∗ ) − 4 v ′ \left(v_1^*+v_2^*+v_3^*+v_4^*\right)-4 v^{\prime} (v1+v2+v3+v4)4v,所以优化项定义为:
E R ( V ) = ∑ v ∥ W v V − 1 ∣ N v ∣ ∑ v i ∈ N v W v i V ∥ 2 E_R(V)=\sum_v\left\|W_v V-\frac{1}{\left|N_v\right|} \sum_{v_i \in N_v} W_{v_i} V\right\|^2 ER(V)=v WvVNv1viNvWviV 2
N v N_v Nv v v v周围的四个邻居, W v  and  W v i W_v \text { and } W_{v_i} Wv and Wvi定义为:
[ 0 … 1 0 … 0 0 … 0 1 … 0 ] \left[\begin{array}{llllll} 0 & \ldots & 1 & 0 & \ldots & 0 \\ 0 & \ldots & 0 & 1 & \ldots & 0 \end{array}\right] [00100100]

3.3 Scale Preservation—— E S ( V ) E_S(V) ES(V)

当需要拼接较多图像时,选取一张图像作为参考视图可能会导致某些远离参考图像的图像在拼接过程中出现明显的尺度变化或扭曲,如图7所示。这是因为拼接算法倾向于优化对齐误差,可能会对某些图像进行较大的变换,以便让它们与参考图像更好地对齐。
在这里插入图片描述
对于匹配的图像对 ( I i , I j ) (I_i, I_j) (Ii,Ij),我们在来自Ii的特征点上建立一个凸多边形 P i P_i Pi,并在图像 I j I_j Ij上找到其对应的多边形 P j P_j Pj。然后利定义了相对尺度因子 γ i j γ_{ij} γij:
γ i j = e P i e P j \gamma_{i j}=\frac{e_{P_i}}{e_{P_j}} γij=ePjePi
其中 e P j e_{P_j} ePj是凸多边形的周长。

这里多讲一句如何获取凸多边形:
寻找凸多边形的一种常见方法是使用特征点的凸包(Convex Hull)算法。凸包是一个凸多边形,它包围着给定点集中的所有点,并且没有凹陷部分。在图像处理和计算机视觉中,凸包经常用于寻找特征点集的最小凸多边形。

通过下面方式求解每幅图像的绝对比例因子:
arg ⁡ min ⁡ s ∑ ( i , j ) ∈ C I ∣ γ i j s j − s i ∣ 2 ,  s.t.  ∑ i ∈ I s i = N I , \begin{aligned} & \arg \min _s \sum_{(i, j) \in C_I}\left|\gamma_{i j} s_j-s_i\right|^2, \\ & \text { s.t. } \sum_{i \in I} s_i=N_I, \end{aligned} argsmin(i,j)CIγijsjsi2, s.t. iIsi=NI,
其中 N I N_I NI表示图像个数, C I C_I CI表示匹配的图像对集合
获得比例因子后,优化项可以如下定义:
E S ( V ) = ∑ I i ∈ I ∥ S ( I i ∗ ) − s i S ( I i ) ∥ 2 , S ( I i ) = [ ∥ B t ∥ + ∥ B b ∥ ∥ B l ∥ + ∥ B r ∥ ] , \begin{aligned} E_S(V) & =\sum_{I_i \in I}\left\|S\left(I_i^*\right)-s_i S\left(I_i\right)\right\|^2, \\ S\left(I_i\right) & =\left[\begin{array}{l} \left\|B_t\right\|+\left\|B_b\right\| \\ \left\|B_l\right\|+\left\|B_r\right\| \end{array}\right], \end{aligned} ES(V)S(Ii)=IiIS(Ii)siS(Ii)2,=[Bt+BbBl+Br],
S是定义为二维矢量的图像的比例测量。 B t 、 B b 、 B l 、 B r B_t、B_b、B_l、B_r BtBbBlBr分别为图像 I i I_i Ii的上、下、左、右边缘,可以用顶点 V V V表示。例如,边的长度 B t B_t Bt是V的非线性函数,为:
∥ B t ∥ = ( W t l V − W t r V ) ⊤ ( W t l V − W t r V ) \left\|B_t\right\|=\sqrt{\left(W_{t l} V-W_{t r} V\right)^{\top}\left(W_{t l} V-W_{t r} V\right)} Bt=(WtlVWtrV)(WtlVWtrV)
其中 W t l W_tl Wtl W t r W_tr Wtr是左上角和右上方顶点的索引矩阵。

3.4 Extra Constraints

我们的基于网格的模型允许方便地合并额外的约束。(意思是可以针对自己的场景添加不同的优化项
对于城市场景和闭路摄像机运动的特殊情况,我们加入以下一个或多个先验:

(a)Line preserving constraint

为了进一步减少变形,我们引入了一种防止线段弯曲的保线项。我们使用[30]的方法自动提取线段,并将线段的集合表示为 L L L。对于 L L L中的线段 l l l,我们均匀采样几个点{p1, p2,…, pn},使每个网格至少包含一个点。为了使 l l l笔直,直线上的所有线段都具有相同的方向,从而得到能量函数:
E line  ( V ) = λ line  ∑ l ∈ L ∑ i = 1 n − 1 ( [ a l , b l ] ⊥ ⋅ ( W p i V − W p i + 1 V ) ) E_{\text {line }}(V)=\lambda_{\text {line }} \sum_{l \in L} \sum_{i=1}^{n-1}\left(\left[a_l, b_l\right]_{\perp} \cdot\left(W_{p_i} V-W_{p_{i+1}} V\right)\right) Eline (V)=λline lLi=1n1([al,bl](WpiVWpi+1V))
其中 [ a l , b l ] [a_l, b_l] [al,bl] l l l的正交方向, p i p_i pi的坐标是由外接顶点的线性插值形成的,如 E A ( V ) E_A(V) EA(V)公式的方法 λ l i n e λ_line λline是一个权重,在我们的实验中通常设为1。我们在优化过程中不断更新。图9显示了检测到的线段。加入保线项后,拼接结果得到改善,如图8(b)所示。

(b)Orientation constraint

城市场景通常包含一些消失的线,它们要么是垂直的,要么是水平的。在加强它们的直线性的同时,我们也限制了它们的方向。检测线段后,我们将线段分为垂直和水平两类LV和LH(图9分别用绿色和黄色表示)
p和q分别是线段两端点
E O ( V ) = λ O ( ∑ l ∈ L V ∣ ( W p x − W q x ) V ∣ 2 + ∑ l ∈ L H ∣ ( W p y − W q y ) V ∣ 2 ) \begin{aligned} & E_O(V)=\lambda_O\left(\sum_{l \in L_V}\left|\left(W_{p_x}-W_{q_x}\right) V\right|^2\right. \\ & \left.+\sum_{l \in L_H}\left|\left(W_{p_y}-W_{q_y}\right) V\right|^2\right) \\ & \end{aligned} EO(V)=λO(lLV(WpxWqx)V2+lLH (WpyWqy)V 2)
其中 W p x W_{px} Wpx W p y W_{py} Wpy 分别是 p p p x x x y y y 坐标下的插值权向量。 λ O λ_O λO在实验中是一个值为1的权值

4.能量网格优化的能量函数优化

由于 E ( V ) E(V) E(V)中定义的能量函数不是quadratic(二次函数),我们提出了一种迭代方法来优化它。(其实就是 E S E_S ES E l i n e E_{line} Eline这两项的问题),使用这两项的线性近似去代替

4.1 Linear Approximation

(a) E S ( V ) E_S(V) ES(V)

回顾3.3:
E S E_S ES是非线性的,因为尺度函数S需要计算边的长度
∥ B t ∥ = ( W t l V − W t r V ) ⊤ ( W t l V − W t r V ) \left\|B_t\right\|=\sqrt{\left(W_{t l} V-W_{t r} V\right)^{\top}\left(W_{t l} V-W_{t r} V\right)} Bt=(WtlVWtrV)(WtlVWtrV)
假设 B t ∗ B_t^* Bt B t B_t Bt的方向向量,在迭代过程中基本不变,那么可以得到:
E S 1 ( V ) = ∑ I i ∈ I ( ∣ B t ∗ ⊤ B t + B b ∗ ⊤ B b − 2 s i W ∣ 2 + ∣ B l ∗ ⊤ B l + B r ∗ ⊤ B r − 2 s i H ∣ 2 ) \begin{aligned} E_{S 1}(V)=\sum_{I_i \in I}\left(\mid B_t^{* \top}\right. & B_t+B_b^{*^{\top}} B_b-\left.2 s_i W\right|^2 \\ & \left.+\left|B_l^{*^{\top}} B_l+B_r^{* \top} B_r-2 s_i H\right|^2\right)\end{aligned} ES1(V)=IiI(BtBt+BbBb2siW2+ BlBl+BrBr2siH 2)
其中W和H分别为图像宽和高
由于我们假设边缘方向变化不大,我们通过引入下列式子来正则化它:
E S 2 ( V ) = ∑ i ∈ I ( ∣ B t ′ ⊤ B t ∣ 2 + ∣ B b ′ ⊤ B b ∣ 2 + ∣ B l ′ ⊤ B l ∣ 2 + ∣ B r ′ ⊤ B r ∣ 2 ) , \begin{gathered}E_{S 2}(V)=\sum_{i \in I}\left(\left|B_t^{\prime \top} B_t\right|^2+\left|B_b^{\prime \top} B_b\right|^2+\left|B_l^{\prime \top} B_l\right|^2\right. \\ \left.+\left|B_r^{\prime \top} B_r\right|^2\right),\end{gathered} ES2(V)=iI( Bt′⊤Bt 2+ Bb′⊤Bb 2+ Bl′⊤Bl 2+ Br′⊤Br 2),
B t ′ , B b ′ , B l ′ B_t^{\prime}, B_b^{\prime}, B_l^{\prime} Bt,Bb,Bl, and B r ′ B_r^{\prime} Br B t ∗ , B b ∗ , B l ∗ B_t^*, B_b^*, B_l^* Bt,Bb,Bl, and B r ∗ B_r^* Br的orthogonally normalized vectors(正交归一化向量)

正则化(regularization)方法。正则化是一种用于限制或约束模型或参数的技术,以避免过度拟合和提高模型的稳定性。

那么:
E S ′ ( V ) = E S 1 ( V ) + λ E S 2 ( V ) E_S^{\prime}(V)=E_{S 1}(V)+\lambda E_{S 2}(V) ES(V)=ES1(V)+λES2(V)
λ \lambda λ=0.1~0.5

(b) E l i n e E_{line} Eline

类似地,线条保持项 Eline 不是二次的,因为方向向量 [al , bl] 是未知的。我们通过假设线条变化平滑来进行线性近似。在每次迭代中,我们基于当前解来估计方向。通过在公式 (6) 中固定 al 和 bl,Eline 对我们来说变成一个二次函数,以便我们可以进行迭代优化和更新。

4.2 Efficient Optimization

线性近似后,就可以有效地按下面式子优化 E V E_V EV
[ A A A R A S A X ] V = [ 0 0 b S b X ] \left[\begin{array}{c}A_A \\ A_R \\ A_S \\ A_X\end{array}\right] V=\left[\begin{array}{c}0 \\ 0 \\ b_S \\ b_X\end{array}\right] AAARASAX V= 00bSbX
其中, A A 、 A R 、 A S 、 A X A_A、A_R、A_S、A_X AAARASAXare Jacobian matrices
0 , 0 、 b 、 b X 0,0、b、b_X 0,0bbX are residual errors of the alignment, regularization, scale preserving, and extra terms respectively.
矩阵可以转为下列求和格式:
( A A T A A + … + A X T A X ) V = A S T b S + A X T b X \left(A_A^T A_A+\ldots+A_X^T A_X\right) V=A_S^T b_S+A_X^T b_X (AATAA++AXTAX)V=ASTbS+AXTbX

除尺度和保线项外,其他项均为二次项,故其雅可比矩阵和残差均为常数。我们在每次迭代中更新AS、b、Aline和bline。对于包含14张图像的“Urban1”示例,在每次迭代中初始化矩阵需要2.30秒,更新矩阵需要0.21秒。整个优化过程共经过3次迭代,耗时15.4秒。我们用Cholesky分解来解析解线性系统。如果我们使用共轭梯度算法在每次迭代中迭代更新解,优化速度会更快。

5. SEAMLESS COMPOSITION

在以往的处理方法中,通常以色差作为参考。在我们的宽基线情况下,对齐误差可能很大,未对齐的像素可能有相似的颜色。我们提出将对准误差色差相结合来产生一个更好的条件。

5.1 Alignment Score

在[8]中使用了图割来查找图像之间的接缝,这样接缝两侧的像素是一致的。
我们测量所有匹配的特征点的对齐误差,并通过高斯的方式将其映射到[0,1]使用高斯函数将对齐误差映射到 [ 0 , 1 ] [0,1] [0,1],得到feature alignment scores(注意这是针对所有特征点对的评分)
s p , q = exp ⁡ ( − ∥ Ψ i ( p ) − Ψ j ( q ) ∥ 2 σ 1 2 ) s_{p, q}=\exp \left(-\frac{\left\|\Psi_i(p)-\Psi_j(q)\right\|^2}{\sigma_1^2}\right) sp,q=exp(σ12Ψi(p)Ψj(q)2)

( p , q ) (p, q) (p,q)分别为来自图 I i I_i Ii I j I_j Ij的一对匹配地特征点。 Ψ i \Psi_i Ψi and
Ψ j \Psi_j Ψj分别是图 I i I_i Ii I j I_j Ij对应的warping functions。
σ 1 σ_1 σ1设置为0.003D,其中D为图像对角线长度。对于比对误差 ∥ Ψ i ( p ) − Ψ j ( q ) ∥ \left\|\Psi_i(p)-\Psi_j(q)\right\| Ψi(p)Ψj(q)大于0.01D的特征,我们认为其不可靠,在后续处理中忽略。

在图 I i I_i Ii 上,特征点 p p p 对像素 x x x 的贡献(这里定义了一个权重)取决于p到x的距离为:
w p , x = exp ⁡ ( − ∥ p − x ∥ 2 σ 2 2 ) w_{p, x}=\exp \left(-\frac{\|p-x\|^2}{\sigma_2^2}\right) wp,x=exp(σ22px2)
其中 σ 2 σ_2 σ2 设置为 0.4 D ⋅ s p , q 0.4D · s_{p,q} 0.4Dsp,q
这样我们就可以在图 I i I_i Ii 上得到一个alignment score map:
S I i ( x ) = ∑ p w p , x 2 s p , q ∑ p w p , x S_{I_i}(x)=\frac{\sum_p w_{p, x}^2 s_{p, q}}{\sum_p w_{p, x}} SIi(x)=pwp,xpwp,x2sp,q
I j I_j Ij 同理

然后warp the score maps according to the optimized mesh作者不直接相求和,而是warp后再相加,得到最终的score maps:
S align  = 1 2 ( Ψ i ( S I i ) + Ψ j ( S I j ) ) S_{\text {align }}=\frac{1}{2}\left(\Psi_i\left(S_{I_i}\right)+\Psi_j\left(S_{I_j}\right)\right) Salign =21(Ψi(SIi)+Ψj(SIj))

5.2 Color Score

S color  ( x ) = exp ⁡ ( − ∣ Ψ ( I i ) ( x ) − Ψ ( I j ) ( x ) − μ ∣ 2 σ 2 ) S_{\text {color }}(x)=\exp \left(-\frac{\left|\Psi\left(I_i\right)(x)-\Psi\left(I_j\right)(x)-\mu\right|^2}{\sigma^2}\right) Scolor (x)=exp(σ2Ψ(Ii)(x)Ψ(Ij)(x)μ2)
μ μ μ σ σ σ是L2距离的均值标准差,是根据重叠区域估计的。
可以通过梯度域融合[23]解决全局色差问题。

5.3 Graph-Cuts Optimization

将5.1和5.2中定义的alignment score and color score 组合成一个能量函数:
E ( i , j ) ( x ) = max ⁡ ( 0 , min ⁡ ( 1.5 − S align  − S color  , 1 ) ) E_{(i, j)}(x)=\max \left(0, \min \left(1.5-S_{\text {align }}-S_{\text {color }}, 1\right)\right) E(i,j)(x)=max(0,min(1.5Salign Scolor ,1))
与前面的方法类似,我们通过图切割[31]来优化函数:
E c u t ( p , L ) = ∑ p E d ( p , L p ) + λ s ∑ ( p , q ) ∈ N E s ( p , q , L p , L q ) E_{c u t}(p, L)=\sum_p E_d\left(p, L_p\right)+\lambda_s \sum_{(p, q) \in N} E_s\left(p, q, L_p, L_q\right) Ecut(p,L)=pEd(p,Lp)+λs(p,q)NEs(p,q,Lp,Lq)
E d E_d Ed是由availability of pixels定义的数据项, E s E_s Es是preferring well aligned regions的平滑项, N N N 是相邻像素的集合。 λ s λ_s λs是光滑权值在我们的实验中设为256。
E d ( p , L p ) = { 0 , x ∈ I ^ L p η ,  otherwise  E_d\left(p, L_p\right)= \begin{cases}0, & x \in \hat{I}_{L_p} \\ \eta, & \text { otherwise }\end{cases} Ed(p,Lp)={0,η,xI^Lp otherwise 
其中 I ^ L p \hat{I}_{L_p} I^Lp L p L_p Lp的图像的warped mask。如果a pixel is available in the warped L p − t h L p-th Lpth image,它的代价是0,否则它被设置为一个非常大的 η η η惩罚,以避免被标记为 L p L _p Lp
E s ( p , q , L p , L q ) = E ( L p , L q ) ( p ) + E ( L p , L q ) ( q ) E_s\left(p, q, L_p, L_q\right)=E_{\left(L_p, L_q\right)}(p)+E_{\left(L_p, L_q\right)}(q) Es(p,q,Lp,Lq)=E(Lp,Lq)(p)+E(Lp,Lq)(q)
最后的标记问题是通过最小化能量来解决的。我们利用图割[31]来高效求解,然后应用梯度域融合[23]
在这里插入图片描述

6.总结

对于每幅图像,如果使用保线约束,提取线段的时间约为0.2秒
从图10可以看出虽然作者声称文章产生了较好的接缝,但实际上,效果并未比传统的图割法好多少,接缝仍然从物体穿过而非背景。
在这里插入图片描述
不过加入保线约束和方向约束后,图片中的直线扭曲的现象确实得到了改善。

reference

[8]V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
textures: Image and video synthesis using graph cuts,” ACM Trans.
Graph., vol. 22, no. 3, pp. 277–286, 2003.
[31]Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy min-
imization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 11, pp. 1222–1239, Nov. 2001.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大泽泽的小可爱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值