刘二PyTorch深度学习(四)——PyTorch实现线性回归

用PyTorch实现线性回归(分四步)

第一步:准备数据(x和y必须是矩阵)

第二步:构造计算图——只要把计算图成功构建出来,就可以自动算梯度了(design model)

仿射模型,线性单元(w称为权重,b是偏执,如果想知道w和b的维度,只需要知道输入x和输出y的维度,就可以知道w和b张量的维度了)

构造模型的过程:

  1. 必须定义一个类,并将此类继承至Module类,因为此类中有很多有用的方法

  2. 必须实现两个方法,一个是构造函数__init__(初始化对象时默认调用的函数),另一个是forward(执行前向传播时需要调用的函数),之所以没有反向传播的过程,是因为当继承Module类后,Module自动就帮助完成了

  3. 书写规范:x*w,即x在左,权重在右

上图中的forward函数是一定要重写的,因为在实例化对象的时候一定会用到这个方法

第三步:构造损失函数和优化器

criterion要传的参数有两个:y帽和y

第四步:训练过程(前馈--反馈--更新)

0bff811660db7f1278f258f4c3dbe2c4.png

import torch
import numpy as np
import matplotlib.pyplot as plt

# 第一步:准备数据(必须是tensor格式的)
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])


# 第二步:定义类,构造模型
class LinearModel(torch.nn.Module):
    # 构造函数,用于初始化对象
    def __init__(self):
        super(LinearModel, self).__init__()  # 默认方法
        self.linear = torch.nn.Linear(1, 1)  # 构造对象,第三个参数为是否用到偏执量,默认为True

    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred


# 实例化对象,相当于java中的new
lmodel = LinearModel()

# 第三步:构造损失函数和优化器
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(lmodel.parameters(), lr=0.01)  # 第一个参数会扫描module中的所有参数,如果有权重就会加载到要训练的参数集合中

# 第四步:训练
loss_list = []
for epoc in range(100):
    y_pred = lmodel(x_data)
    loss = criterion(y_pred, y_data)
    loss_list.append(loss.item())
    print(epoc, loss.item())

    optimizer.zero_grad()  # 梯度清零
    loss.backward()
    optimizer.step()  # 自动更新梯度

# 打印权重
print('w=', lmodel.linear.weight.item())
print('b=', lmodel.linear.bias.item())

# 测试
x_test = torch.tensor([[4.0]])
y_test = lmodel(x_test)
print('y_pred=', y_test.data)

epoc_list = np.arange(0, 100, 1)
plt.plot(epoc_list, loss_list)
plt.xlabel('Epoc')
plt.ylabel('loss')
plt.show()

其他优化器的图像:

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值