用PyTorch实现线性回归(分四步)
第一步:准备数据(x和y必须是矩阵)
第二步:构造计算图——只要把计算图成功构建出来,就可以自动算梯度了(design model)
仿射模型,线性单元(w称为权重,b是偏执,如果想知道w和b的维度,只需要知道输入x和输出y的维度,就可以知道w和b张量的维度了)
构造模型的过程:
-
必须定义一个类,并将此类继承至Module类,因为此类中有很多有用的方法
-
必须实现两个方法,一个是构造函数__init__(初始化对象时默认调用的函数),另一个是forward(执行前向传播时需要调用的函数),之所以没有反向传播的过程,是因为当继承Module类后,Module自动就帮助完成了
-
书写规范:x*w,即x在左,权重在右
上图中的forward函数是一定要重写的,因为在实例化对象的时候一定会用到这个方法
第三步:构造损失函数和优化器
criterion要传的参数有两个:y帽和y
第四步:训练过程(前馈--反馈--更新)
import torch
import numpy as np
import matplotlib.pyplot as plt
# 第一步:准备数据(必须是tensor格式的)
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])
# 第二步:定义类,构造模型
class LinearModel(torch.nn.Module):
# 构造函数,用于初始化对象
def __init__(self):
super(LinearModel, self).__init__() # 默认方法
self.linear = torch.nn.Linear(1, 1) # 构造对象,第三个参数为是否用到偏执量,默认为True
def forward(self, x):
y_pred = self.linear(x)
return y_pred
# 实例化对象,相当于java中的new
lmodel = LinearModel()
# 第三步:构造损失函数和优化器
criterion = torch.nn.MSELoss(reduction='sum')
optimizer = torch.optim.SGD(lmodel.parameters(), lr=0.01) # 第一个参数会扫描module中的所有参数,如果有权重就会加载到要训练的参数集合中
# 第四步:训练
loss_list = []
for epoc in range(100):
y_pred = lmodel(x_data)
loss = criterion(y_pred, y_data)
loss_list.append(loss.item())
print(epoc, loss.item())
optimizer.zero_grad() # 梯度清零
loss.backward()
optimizer.step() # 自动更新梯度
# 打印权重
print('w=', lmodel.linear.weight.item())
print('b=', lmodel.linear.bias.item())
# 测试
x_test = torch.tensor([[4.0]])
y_test = lmodel(x_test)
print('y_pred=', y_test.data)
epoc_list = np.arange(0, 100, 1)
plt.plot(epoc_list, loss_list)
plt.xlabel('Epoc')
plt.ylabel('loss')
plt.show()
其他优化器的图像: