《机器人动力学与控制》第五章——速度运动学之机械臂的雅各比矩阵 5.0 导言

《机器人动力学与控制》第五章——速度运动学之机械臂的雅各比矩阵

5.0 导言

前面的章节我们推导了用来描述关节空间与末端执行器工作空间之间位置关系的正逆运动学关系方程。本章我们推导关节与末端执行器之间的速度关系,在此期间我们着重研究末端执行器坐标系的角速度以及其坐标原点的线速度,然后我们再把它们与关节的速度关联起来。
从数学角度来看,正运动学方程定义了一个把笛卡尔空间下的位置姿态和关节的位置联系起来的方程,速度关系则是从正运动学方程的雅各比得到。这里我们所说的雅各比是一个矩阵形式的方程,这个方程可以看成一个标量方程求导的向量形式。这个雅各比(或者说雅各比矩阵)是机器人的分析和控制里面最重要的部分之一。它几乎机器人学的所有领域都有重要的作用。例如:平滑运动策略的计划和执行,判断机器人是否在奇异位置,协调拟人化运动的执行,动力学方程的推导以及从关节到末端执行器的力与扭矩的传递。

由于雅各比矩阵描述了速度之间的关系,我们通过对速度的研究以及表达来开始本章的内容。我们首先

  1. 研究绕固定轴旋转的角速度
  2. 然后通过反对称矩阵的知识把角速度的描述一般化

有了角速度的一般化表达之后,我们就能够推导出一个运动坐标系的角速度以及它原点的线速度。

  1. 接着我们去推导机械臂的雅各比矩阵。

速度之间的关系如下:
关节速度矩阵*雅各比矩阵=机械臂末端执行器的速度矩阵
对于一个具有n关节的机械臂我们首先推导瞬时速度雅各比矩阵,输入是一个nx1的关节速度矩阵,输出是一个6x1的速度矩阵(其中前3个来描述原点的线速度,后3个描述坐标系的角速度)。因此不难发现雅各比矩阵是一个6xn的矩阵。同样的方法可以用来求解末端执行器上的任意一点的角速度和线速度。这一点在我们第九章求解动力学方程时极为重要。

  1. 接着我们讨论机器人的奇异位姿(位置+姿态)

奇异位姿是及机器人失去一个或者多个自由度时的位姿,我们展示奇异位姿在几何学上是怎么定义的并给出几个例子。

  1. 然后我们介绍讲解逆雅各比矩阵
  2. 最后我们通过介绍冗余机械臂来结束本章

这就包括了对逆速度问题,奇异值分解以及操控性问题的讨论。

参考文献

翻译自《robot dynamics and control》
作者:Mark W Spong,Seth Hutchinson, and M. Vidyasagar

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值