Matlab 仿真——直流电机速度控制(2)系统分析

Matlab 仿真——直流电机速度控制(2)系统分析

上一节我们成功在matlab建立好了电机系统模型,这一节我们来分析这个系统的时域响应

0. 被控对象与设计要求

这里把设计需求和系统转换方程粘贴在这里:

设计需求(阶跃响应):

  • 稳定时间<2s
  • 超调<5%
  • 稳态误差<1%

转换方程:
s ( J s + b ) Θ ( s ) = K I ( s ) s(Js + b)\Theta(s) = KI(s) s(Js+b)Θ(s)=KI(s)
( L s + R ) I ( s ) = V ( s ) − K s Θ ( s ) (Ls + R)I(s) = V(s) - Ks\Theta(s) (Ls+R)I(s)=V(s)KsΘ(s)
P ( s ) = Θ ˙ ( s ) V ( s ) = K ( J s + b ) ( L s + R ) + K 2 [ r a d / s e c V ] P(s) = \frac {\dot{\Theta}(s)}{V(s)} = \frac{K}{(Js + b)(Ls + R) + K^2} \qquad [ \frac{rad/sec}{V}] P(s)=V(s)Θ˙(s)=(Js+b)(Ls+R)+K2K[Vrad/sec]

1. 开环响应

让我们看看该系统的开环响应如何,是否满足我们对电机的要求。matlab自带了线性系统分析工具。
Matlab运行以下代码

%motor parameter
J = 0.01;
b = 0.1;
K = 0.01;
R = 1;
L = 0.5;
%motor tf function
s = tf('s');
P_motor = K/((J*s+b)*(L*s+R)+K^2)
%求系统P_motor的阶跃响应,时间为05秒,步长0.1s
linearSystemAnalyzer('step',P_motor,0:0.1:5);

输出
在这里插入图片描述
在窗口上右击选择要显示的数据,我们得到系统的稳定时间为2.07秒,终值为0.0999。稳定时间不满足我们的要求。
在这里插入图片描述

2. LTI 模型特征

我们选择该系统的零极点图来观察
在这里插入图片描述
在这里插入图片描述
发现该系统有两个实极点,一个在-2处, 一个在-10处。也因为极点没有虚部,所以系统不存在震荡。根据现代控制系统的知识,我们推测-2处的极点主导了系统的响应。为了验证这个想法,我们找到一个单极点的系统进行比较rP_motor = 0.1/(0.5*s+1)
代码如下

%motor parameter
J = 0.01;
b = 0.1;
K = 0.01;
R = 1;
L = 0.5;
%motor tf function
s = tf('s');
P_motor = K/((J*s+b)*(L*s+R)+K^2)
rP_motor = 0.1/(0.5*s+1);
%求系统P_motor的阶跃响应,时间为05秒,步长0.1s
linearSystemAnalyzer('step',P_motor,0:0.1:5);

在弹出的窗口里面我们导入新的系统阶跃响应
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
可以发现系统阶跃响应很接近,这印证了我们的猜想。

3. 其他输入信号的响应

除了阶跃响应,有时我们也想看看系统输入为其他输入信号时的情况。你可以直接导入你自己定义好的输入信号,或者用Matlab为你准备好的信号模板定制输入信号。接下来我们演示如何用模板信号。

  1. 右击,选择Plot Types——Linear Simulation
    在这里插入图片描述
  2. 定义仿真时间,步长,然后点击设计信号
    在这里插入图片描述
  3. 填写信号参数,插入,然后点击仿真
    在这里插入图片描述
  4. 接着你就能看到新的输入型号的输出结果了
    在这里插入图片描述

4. 引用

https://ctms.engin.umich.edu/CTMS/index.php?example=MotorSpeed&section=SystemModeling

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值