移动机器人系列----->框架开篇

移动机器人系列----->框架开篇

1: 框架浅聊

这次项目的重点是实现移动机器人的定位建图以及路径规划算法,底盘硬件部分不过多的进行展开。下图是项目简单的硬件框架示意图。

(1)为节约时间,机器人底盘部分会直接在TB上购买现成的底盘套件。STM32做电机的运动控制和超声波传感器的数据采集。STM32与树莓派之间通过串口进行通讯,对于在网上购买的套件,可能需要修改部分STM32串口通信中代码,解算树莓派下发的线速度和角速度去控制底盘的运动。

(2)示意图中红线之上的部分,是本次项目的重点。需要在树莓派4B(8+32G)上去实现一个RGBD-SLAM(相机是Astra-Pro),以及后续移动机器人的路劲规划算法。图中的控制端是电脑或者手机,用来实现和移动机器人本机的交互。这之中最大最大的难点应该是在算法的优化和加速上,如何在树莓派有限的计算资源下做到更高的帧率?
硬件示意图

2: 算法漫谈
(1)SLAM算法—>ORB-SLAM2

本次项目中准备采用视觉SLAM去实现移动机器人的定位和建图,采用视觉而不是激光雷达的原因,一是因为手里刚好有这个硬件,其次是激光雷达有比较多的开源博文,想尝试着做一下视觉方案。目前开源的视觉SLAM框架很多,ORB-SLAM2/3, VINS, OpenVINS等等,这些框架里有纯视觉方案,也有融合IMU,里程计等传感器的方案。传感器越多,算法的精度和稳定性也许会有所提升,但后面所构建的优化问题自然也就越复杂。而本次项目中所做的低速移动机器人主要在室内环境运行,纯视觉的RGBD-SLAM应该就够了。算法框架则是选择了曾经一度被称之为创业公司的救星的ORB-SLAM2,这里没有选择最新的ORB-SLAM3,一是因为目前用不到IMU和多地图Altas,其次是因为ORB-SLAM3貌似BUG不少。

(2)路径规划算法—>手动实现

路径规划的相关开源算法也很多,而且大部分都已经封装成了现成的程序包,像ROS中的move_base包等等,但可能就需要在树莓派上安装ROS,这就使得本不富裕的资源,变得更加的捉襟见肘,所以现在的初步想法是自己手动去实现A*,D*这些算法,这样也可以提高自己对于算法的理解。

结束语:项目中涉及到的大部分技术内容,都还没有深入的接触过,只有利用下班时间去边学边做,有兴趣的同学可以一起交流,也非常希望对涉及到内容有了解的大佬能够给一些建议和指导。这篇博客的内容在后面做的过程中也会逐步细化和完善。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值