Dify vs FastGPT:探索最佳AI知识库解决方案

之前出了一些 Dify 的[基础教程],后台有小伙伴经常问三金:Dify 和 fastGPT 哪个好啊?我该用哪个呢?

为了帮小伙伴解开这个疑惑,今儿三金就先带大家分别看下这两个产品在知识库上的异同点。废话不多说,开整!

Dify

先来看 Dify 吧,三金比较熟。这里也推下我之前做的 [Dify 基础教程],从部署到使用上,整体来说都比较容易上手,类似于 Coze

我们之前创建过一个 k8s 相关的知识库,在里面导入了一本讲解 Kubernetes 的书籍,文本分段和清洗都是默认的配置

最终得到的文档信息如下:

  • 分段为 147
  • 段落长度 500

现在将它加到应用中试试看效果:

可以看到它从知识库中找到了相关内容并给出了回答。除此之外它还标注了引用的知识库,以及从哪段内容中获取的内容

目前看起来效果还 OK,接下来我们试试 Dify 中提供的 QA 模式,看看在这种模式下知识库检索能力是否能得到提升:

QA 模式的嵌入处理会比较耗时,需要耐心等待:

最终花费了 27 分钟的时间,终于分段好了:

问两个问题试试看:

emmmm,咋说呢,回答是回答了,但是感觉没啥变化,回答还是和刚刚一样精简😄

FastGPT

相同的文件,我们在 FastGPT 中创建并使用知识库,这里同样先按照默认配置进行知识库创建

然后在应用中提出相同的问题,看看结果怎么样?

可以看到都是默认配置,但是 FastGPT 相较于 Dify 来说,回答得更为详细。不但给出了 k8s 的相关概念,还连带着介绍了 k8s 的核心组件以及功能特点

这是因为 fastGPT 在回答问题时,会帮我们扩展问题,这样可以使回答的内容更加详细精准:

接下来我们升级一下知识库,在创建知识库时选择 QA 模式(也就是问答拆分),看看二者在效果还有没有这种明显差异。

可以看到正在生成数据,不过过程有些慢(这块和 Dify 一样,QA 模式的生成一般都会耗费大量的 token 和时间):

再回到应用中进行测试:

简直是正中目标!!相比之下,FastGPT 的知识库能力完胜。

在本地部署的版本上,QA 花费的时间太长而且因为三金的 API 问题,老是卡住,所以直接切到 fastGPT 的线上去测试,最终效果是一样的。

总结

从效果上来看,FastGPT 的知识库检索是强于 Dify 的,但是这并不代表 Dify 就不如 FastGPT:

  • 首先,在知识库创建上,FastGPT 在「Web 站点同步」和「外部文件库」这两个功能上是收费的,就算是本地部署也是收费的,而 Dify 则是免费的
  • 其次,个人感觉 Dify 的部署到使用,是比较简单的,而且交互体验和 UI 上也优于 FastGPT
  • 开源版本的 FastGPT 的知识库限制为 30个,应用限制为 500 个;而 Dify 的社区版没有这些限制
  • Dify 中提供了丰富的内置工具和一些模版,FastGPT 在这块比较欠缺

综上,如果对知识库有比较高的要求,尤其是想做智能客服类的产品,推荐使用 FastGPT,反之对 Agent 感兴趣则可以尝试一下 Dify

在这里插入图片描述

如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

### 特点 #### Dify Dify是一款开源的大语言模型应用开发平台,融合了后端即服务(Backend as a Service)和LLMOps的理念,使得开发者能快速构建生产级别的生成式AI应用程序[^3]。对于非技术背景的人士来说,也可以参与至AI应用的定义以及数据运营过程之中。 #### FastGPT FastGPT知识库检索能力强于Dify,支持创建多个预览地址并可单独统计各个预览地址的使用状况以便更好地进行分析与优化工作[^1][^2]。然而,“Web站点同步”和“外部文件库”的功能仅限付费用户使用,即使是本地部署也不例外。 ### 性能 在知识库检索方面,FastGPT表现得更为出色;而在易用性和用户体验上,则是Dify更胜一筹——不仅部署简单快捷,其UI设计也更加友好直观。此外,Dify还提供了一系列实用的内置工具及模板供使用者选用,相比之下,FastGPT在这方面的资源较为匮乏。 ### 适用场景 当考虑成本因素时,如果项目预算有限或者希望获得更多的灵活性来定制化自己的解决方案,那么可以选择Dify作为首选方案,因为该平台上许多高级特性都是免费提供的,并且不存在像FastGPT那样的严格数量限制。 另一方面,如果有较高的精度需求并且愿意为此支付额外费用的话,那么可能会倾向于选择FastGPT来进行复杂查询处理的任务,尤其是在涉及到大规模文档索引的情况下。 ```bash # 使用 Docker 安装 FastGPT 示例命令 curl -o docker-compose-pgvector.yml https://raw.githubusercontent.com/labring/FastGPT/main/files/docker/docker-compose-pgvector.yml docker-compose up -d ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值