Weakly supervised single image dehazing 个人学习笔记

本文提出了一种新的弱监督单图像去雾网络,无需真实透射图和大气光监督,自动估计相关参数。通过多层次多尺度块设计,减少训练数据约束,实现无雾图像恢复。实验表明,该方法在真实和合成数据集上的去雾性能与监督方法相当,且通过微调能提升对真实数据的处理效果。
摘要由CSDN通过智能技术生成

在这里插入图片描述
一、摘要
单图像去雾处理是许多实际视觉系统的关键图像预处理步骤。大多数现有的去雾方法利用各种人工设计的先验或对合成的雾天图像信息(如无雾图像、传输图和大气光)进行监督训练来解决这一问题。然而,对人工设计的先验的假设很容易被违反,而且收集现实的透射图和大气光是不实际的。本文提出了一种新的基于多层次多尺度块的弱监督网络。该网络减少了对训练数据的约束,在不使用任何真实的透射图和大气光作为监督的情况下,自动估计透射图、大气光和中间无雾图像。此外,估计的中间无雾图像通过嵌入物理模型,有助于生成准确的传输图和大气光,为最终的无雾图像提供了可靠的恢复。特别是,我们的网络也可以在真实数据集上进行训练,以对模型进行微调,微调操作可以提高对真实数据集的去雾性能。定量和定性的实验结果表明,该方法的性能与监督方法相当。

二、引言
基于先验的方法,在某些情况下,这些方法并不能产生视觉上令人满意的结果,因为对先验的假设并不总是成立的。基于cnn的方法比之前的方法虽然具有更好的性能,但由于模型训练需要大量的数据来进行监督,它们在实际应用中受到了限制。
现有的去雾方法几乎依赖于更多的合成信息来估计大气光𝑡(𝑥)和透射大气光𝐴,后者使用无雾图像、人工大气光和人工透射图作为基本信息进行监督。但是真实的透射图和大气光比人工的透射图和大气光更为复杂。此外,人工大气光和透射图不满足当前的无监督或弱监督趋势,而需要一个更好的解决方案,可以在没有监督信息的情况下生成大气光和透射图
在本文中,我们提出了一种新的弱监督去雾网络,它在没有任何监督大气光和传输图信息的情况下,对模糊和相应的无雾图像进行训练。该网络没有向网络提供大量的训练数据,而是只使用无雾霾图像的地面真实情况进行监督。大气光和透射图网络利用损失函数等式(7)以自动学习的方式估计透射图和大气光。此外,我们的网络还可以在真实数据集上进行训练,作为半监督对模型进行微调,微调操作提高了真实数据集的脱雾性能。图1是使用该方法进行的样本脱模糊图像。<

### 回答1: 弱监督学习weakly supervised learning)是一种机器学习方法,其训练数据只提供了部分标签或不完整的标签,而不是完全标注的数据。这种方法通常用于解决大规模数据集的标注问题,因为完全标注数据的收集和标注成本很高。弱监督学习可以通过使用不完整的标签来训练模型,从而实现对未标注数据的分类或预测。 ### 回答2: Weakly supervised learning(弱监督学习)是指在训练模型时,使用相对较少的标注数据来指导训练,因为标注数据的收集和标注成本非常高。相较于传统监督学习只使用有标注的数据进行训练,弱监督学习使用的训练数据中包含大量的无标注数据,而标注数据的质量并不足够高,因此弱监督学习面临的挑战就是如何借助未标注数据自动学习有用的信息。 弱监督学习的应用十分广泛,比如图像分类、文本分类、目标检测等。在图像分类中,对于一张图像可能存在多个物体,但是只有其中的一个有标注信息。弱监督学习通过利用未标注数据中的信息,提取出图像中所有物体的特征,并组合在一起来完成图像分类。在文本分类中,弱监督学习可以通过利用一些无需标注的信息(比如文本长度、单词频率等)来训练模型,从而完成文本分类。 因此,弱监督学习的优点在于可以有效地利用未标注数据来提高模型的性能和泛化能力,降低了标注数据的成本,减少了人工标注数据的难度。但是,相较于传统监督学习,弱监督学习的性能仍然有很大的提升空间。在应用实践中需要不断地探索更加有效的方法来挖掘未标注数据中的信息,提高模型的性能。 ### 回答3: 弱监督学习weakly supervised learning)是机器学习中的一种方法,它利用相对较少的标注数据来训练模型。相比于传统的监督学习,需要大量的准确标注数据,弱监督学习可以大大减少标注数据的数量和标注的工作量。 弱监督学习的训练数据不一定是完全标注的数据,而是包含一些不准确或不完整的标注信息。这些标注信息可能是部分标注的数据、有噪声的数据或者只有粗糙的标注信息的数据。弱监督学习需要通过学习隐含在这些数据中的模式和规律,来预测新样本的标签。 弱监督学习的优点在于,它可以利用更多的数据来训练模型,尤其是一些难以标注的或者昂贵的数据。例如,在医学领域中,弱监督学习可以利用医生的诊断报告来训练模型,而不需要对每个病人进行详细的检查和诊断。 但是,弱监督学习也有一些缺点。由于训练数据的标注信息不完全,模型容易受到噪声的影响,导致预测结果不准确。解决这个问题的方法是利用更多的弱监督数据来训练模型,或者结合其他监督方法来提高模型的准确性。 总之,弱监督学习是一个有前途的方法,可以为许多应用程序提供更好的解决方案。随着技术的不断发展和数据的不断增加,弱监督学习将会成为我们在大规模数据分析和应用中的重要工具之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值