Weakly supervised single image dehazing 个人学习笔记

本文提出了一种新的弱监督单图像去雾网络,无需真实透射图和大气光监督,自动估计相关参数。通过多层次多尺度块设计,减少训练数据约束,实现无雾图像恢复。实验表明,该方法在真实和合成数据集上的去雾性能与监督方法相当,且通过微调能提升对真实数据的处理效果。
摘要由CSDN通过智能技术生成

在这里插入图片描述
一、摘要
单图像去雾处理是许多实际视觉系统的关键图像预处理步骤。大多数现有的去雾方法利用各种人工设计的先验或对合成的雾天图像信息(如无雾图像、传输图和大气光)进行监督训练来解决这一问题。然而,对人工设计的先验的假设很容易被违反,而且收集现实的透射图和大气光是不实际的。本文提出了一种新的基于多层次多尺度块的弱监督网络。该网络减少了对训练数据的约束,在不使用任何真实的透射图和大气光作为监督的情况下,自动估计透射图、大气光和中间无雾图像。此外,估计的中间无雾图像通过嵌入物理模型,有助于生成准确的传输图和大气光,为最终的无雾图像提供了可靠的恢复。特别是,我们的网络也可以在真实数据集上进行训练,以对模型进行微调,微调操作可以提高对真实数据集的去雾性能。定量和定性的实验结果表明,该方法的性能与监督方法相当。

二、引言
基于先验的方法,在某些情况下,这些方法并不能产生视觉上令人满意的结果,因为对先验的假设并不总是成立的。基于cnn的方法比之前的方法虽然具有更好的性能,但由于模型训练需要大量的数据来进行监督,它们在实际应用中受到了限制。
现有的去雾方法几乎依赖于更多的合成信息来估计大气光𝑡(𝑥)和透射大气光𝐴,后者使用无雾图像、人工大气光和人工透射图作为基本信息进行监督。但是真实的透射图和大气光比人工的透射图和大气光更为复杂。此外,人工大气光和透射图不满足当前的无监督或弱监督趋势,而需要一个更好的解决方案,可以在没有监督信息的情况下生成大气光和透射图
在本文中,我们提出了一种新的弱监督去雾网络,它在没有任何监督大气光和传输图信息的情况下,对模糊和相应的无雾图像进行训练。该网络没有向网络提供大量的训练数据,而是只使用无雾霾图像的地面真实情况进行监督。大气光和透射图网络利用损失函数等式(7)以自动学习的方式估计透射图和大气光。此外,我们的网络还可以在真实数据集上进行训练,作为半监督对模型进行微调,微调操作提高了真实数据集的脱雾性能。图1是使用该方法进行的样本脱模糊图像。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值