【笔记】Pade Approximations

1 pade approximations是什么?

Padé Approximations是一种对pure delay使用常规传函进行近似替换的方法,matlab提供了的一个库函数pade
在传递函数中,用 e − τ s e^{-\tau s} eτs表示纯延时pure delay环节,它对信号的幅值不会有任何影响,只会影响信号的相位。
image.png

2 为什么需要进行近似?

1)不能进行根轨迹分析
因为 e − τ s e^{-\tau s} eτs并不包含零极点,如果进行根轨迹rlocus分析,pure delay环节的影响并不能得到体现,但是它对控制系统的影响却非常的大。
2)影响LQR和H∞控制器设计
image.png
具体原因不在这里展开。

3 如何计算?

传递函数的一般表达式如下,m和n分别表示分子和分母的阶次。
image.png
使用泰勒级数展开。
image.png

m = n = 1为例,进行计算。
image.png

然后把等式展开,求取各项系数。
image.png

当m、n取不同的值时,其近似的传函如下表。那我们究竟该如何选择呢?带着这个问题,看下一章节。
image.png

4 两个重要的问题

image.png

先回答第2个问题,这个问题相对比较容易回答。
仅仅只有当m=n时,近似的传函的增益始终为1,也就是0dB,也就不会对信号幅值进行放大或者缩小,这是我们所期望的。至于为什么,大家可以看上面的m、n取不同值时近似传函的表格。
下面是一个例子,根据bode图可以看出,其幅值一直都是0dB。
image.png
image.png

再回答第1个问题。大家都知道,如果泰勒级数的阶数越高,越能更精确的近似 e − s e^{-s} es
下图中,绘制了不同阶数传函与 e − s e^{- s} es的bode图,可以看出,阶数越高,相位出现“偏离”时对应的频率也越高,也就是能覆盖更高的频率范围。
image.png

那么阶次的选择依据如下:
出现相位”偏离“对应的频率要大于 -3dB 对应的截止频率(cutoff frequency),如下图所示。
image.png
这个很好理解,在我们关心的频率范围内,尽量不要有太大的相位误差。

5 参考

本文仅仅是对下面视频的笔记,如要了解更详细的信息,可以查看下面的链接。
https://ww2.mathworks.cn/videos/control-systems-in-practice-part-12-why-pade-approximations-are-great-1655105423132.html

### Pade近似的分步计算方法 Pade近似是一种通过两个多项式的比值来逼近给定函数的方法。假设目标函数 \( f(x) \) 的泰勒展开已知,则可以通过构造分子多项式 \( p(x) \) 和分母多项式 \( q(x) \),使得它们的商能够更好地拟合原函数。 #### 定义 设 \( R_{m,n}(x) = \frac{p_m(x)}{q_n(x)} \) 是函数 \( f(x) \) 的 [\( m, n \)] 阶Pade近似,其中 \( p_m(x) \) 是 \( m \)-阶多项式,而 \( q_n(x) \) 是 \( n \)-阶多项式[^1]。 满足条件: \[ f(x) - \frac{p_m(x)}{q_n(x)} = O(x^{m+n+1}) \] 即误差项至少为 \( x^{m+n+1} \) 的高阶无穷小。 --- #### 计算过程 以下是具体的分步计算流程: 1. **获取泰勒级数** 假设 \( f(x) \) 已经展开了前若干项的泰勒级数形式: \[ f(x) = a_0 + a_1x + a_2x^2 + \cdots \] 2. **定义分子和分母多项式** 设分子多项式为: \[ p_m(x) = c_0 + c_1x + c_2x^2 + \cdots + c_mx^m \] 分母多项式为: \[ q_n(x) = 1 + d_1x + d_2x^2 + \cdots + d_nx^n \] (注意:为了简化方程组求解,通常令 \( q(0) = 1 \)) 3. **建立匹配关系** 将 \( R_{m,n}(x) = \frac{p_m(x)}{q_n(x)} \) 展开并与 \( f(x) \) 对应系数相比较,得到一组线性代数方程用于确定未知参数 \( c_i \) 和 \( d_j \)。 4. **消去余项并求解** 利用上述匹配关系可以构建如下矩阵方程: \[ A \cdot X = B \] 其中 \( A \) 表示由泰勒系数构成的矩阵,\( X \) 包含待求解的 \( c_i \) 和 \( d_j \),\( B \) 来自于原始泰勒展开中的常数值。 5. **验证精度** 使用所得的结果重新组合成新的表达式,并检验其对于不同范围内的输入是否具有较高的精确度。 --- #### 示例:指数函数 \( e^x \) 考虑简单例子——对 \( e^x \) 进行\[2/2\]-型Pade近似。 ##### 泰勒展开 \[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + ... \] ##### 构造多项式 取 \( m=2, n=2 \): - 分子部分: \[ p_2(x)=c_0+c_1x+\frac {c_2x^2} \] - 分母部分: \[ q_2(x)=1+d_1x+d_2x^2 \] ##### 解联立方程 最终可得具体系数值以及完整的分数形式表示: ```matlab syms x; % Define the Taylor series coefficients of exp(x) a = sym([1, 1, 1/2, 1/6]); % Solve for Padé approximation parameters [c,d]=pade(a,2,2); disp(c); disp(d); % Construct and display result as symbolic expression px=c(1)+c(2)*x+c(3)*x^2; qx=1+d(1)*x+d(2)*x^2; result=simplify(px/qx); pretty(result) ``` 此脚本展示了如何利用MATLAB实现自动化处理整个流程[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值