O
O
O:
f
(
n
)
=
O
(
g
(
n
)
)
f(n)=O(g(n))
f(n)=O(g(n)),也就是
∃
c
>
0
,
n
0
\exists c>0,n_0
∃c>0,n0
当
n
≥
n
0
时
候
,
有
f
(
n
)
≤
c
g
(
n
)
n \ge n_0时候,有f(n) \le cg(n)
n≥n0时候,有f(n)≤cg(n)
g
(
n
)
g(n)
g(n)是
f
(
n
)
f(n)
f(n)的渐进上界,嘿嘿,记住啊。
Ω
\Omega
Ω:
f
(
n
)
=
Ω
(
g
(
n
)
)
f(n)=\Omega(g(n))
f(n)=Ω(g(n)),也就是
∃
c
>
0
,
n
0
\exists c>0,n_0
∃c>0,n0
当
n
≥
n
0
时
候
,
有
f
(
n
)
≥
c
g
(
n
)
n \ge n_0时候,有f(n) \ge cg(n)
n≥n0时候,有f(n)≥cg(n)
g
(
n
)
g(n)
g(n)是
f
(
n
)
f(n)
f(n)的渐进下界
Θ
\Theta
Θ:
f
(
n
)
=
Θ
(
g
(
n
)
)
f(n)=\Theta(g(n))
f(n)=Θ(g(n)),也就是
∃
c
1
>
0
,
∃
c
2
>
0
,
n
0
\exists c_1>0,\exists c_2>0,n_0
∃c1>0,∃c2>0,n0
当
n
≥
n
0
时
候
,
有
c
1
g
(
n
)
≤
f
(
n
)
≤
c
2
g
(
n
)
n \ge n_0时候,有 c_1 g(n) \le f(n) \le c_2g(n)
n≥n0时候,有c1g(n)≤f(n)≤c2g(n)
g
(
n
)
g(n)
g(n)是
f
(
n
)
f(n)
f(n)同阶
大O大Omega大Theta
最新推荐文章于 2023-07-19 14:03:30 发布