欧拉角中的万向节死锁

为了便于理解我们举一个现实生活中的例子。


假如我们有一个望远镜和一个用来放望远镜的三脚架,(我们将)三脚架放在地面上,使支撑望远镜的三脚架的顶部是平行于地平面(参考平面)的,以便使得竖向的旋转轴(记为x轴)是完全地垂直于地平面的。现在,我们就可以将望远镜饶x轴旋转360度,从而观察(以望远镜为中心的)水平包围圈的所有方向。通常将正北朝向方位角度记为0度方位角。第二个坐标轴,即平行于地平面的横向的坐标轴(记为y轴)使得望远镜可以饶着它上下旋转,通常将地平面朝向的仰角记为0度,这样,望远镜可以向上仰+90度指向天顶,或者向下-90度指向脚底。


好了,万事俱备。现在,天空中(包括地面上)的每个点只需要唯一的一对x和y度数就可以确定。比如x=90度,y=45度指向的点是位于正东方向的半天空上。


现在,看看万向节死锁是怎么发生的。一次,我们探测到有一个飞行器贴地飞行,位于望远镜的正东方向(x=90度,y=10度),朝着我们直飞过来,我们跟踪它。飞行器飞行方向是保持x轴角度90度不变,而y向的角度在慢慢增大。随着飞行器的临近,y轴角增长的越来越快且当y向的角度达到90度时(即将超越),突然它急转弯朝南飞去。这时,我们发现我们不能将望远镜朝向南方,因为此时y向已经是90度,造成我们失去跟踪目标。这就是万向节死锁!
http://p.blog.csdn.net/images/p_blog_csdn_net/kesalin/gimbal.gif
(译注:为什么说不能将望远镜朝向南方呢,让我们看看坐标变化,从开始的(x=90度,y=10度)到(x=90度,y=90度),这个过程没有问题,望远镜慢慢转动跟踪飞行器。当飞行器到达(x=90度,y=90度)后,坐标突然变成(x=180度,y=90度)(因为朝南),x由90突变成180度,所以望远镜需要饶垂直轴向x轴旋转180-90=90度以便追上飞行器,但此时,望远镜已经是平行于x轴,我们知道饶平行于自身的中轴线的的旋转改变不了朝向,就象拧螺丝一样,螺丝头的指向不变。所以望远镜的指向还是天顶。而后由于飞行器飞远,坐标变成(x=180度,y<90度)时,y向角减小,望远镜只能又转回到正东指向,望'器'兴叹。这说明用x,y旋转角(又称欧拉角)来定向物体有时并不能按照你想像的那样工作,象上面的例子中从(x=90度,y=10度)到(x=90度,y=90度),按照欧拉角旋转确实可以正确地定向,但从(x=90度,y=90度)到(x=180度,y=90度),再到(x=180度,y<90度),按照欧拉角旋转后的定向并非正确。)


万向节锁是什么

万象节锁是指物体的两个旋转轴指向同一个方向。实际上,当两个旋转轴平行时,我们就说万向节锁现象发生了,换句话说,绕一个轴旋转可能会覆盖住另一个轴的旋转,从而失去一维自由度。

通常说来,万向节锁发生在使用Eular Angles(欧拉角)的旋转操作中,原因是Eular Angles按照一定的顺序依次独立地绕轴旋转。让我们想象一个具体的旋转场景,首先物体先绕转X轴旋转,然后再绕Y轴,最后绕Z轴选择,从而完成一个旋转操作(飘飘白云译注:实际是想绕某一个轴旋转,然而Eular Angle将这个旋转分成三个独立的步骤进行),当你绕Y轴旋转90度之后万向节锁的问题就出现了,因为X轴已经被求值了,它不再随同其他两个轴旋转,这样X轴与Z轴就指向同一个方向(它们相当于同一个轴了)。
阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页