自动驾驶(四十)---------视觉SLAM(非线性优化)

       相机与图像我自己相对理解比较深,有不懂的参考这篇文章:https://blog.csdn.net/LWHGMAN/article/details/88976116

       现在我们已经知道,方程中的位姿可以由变换矩阵来描述,然后用李代数进行优化。观测方程由相机成像模型给出。然而,由于噪声的存在,运动方程和观测方程的等式必定不是精确成立的。所以,与其假设数据必须符合方程,不如来讨论,如何在有噪声的数据中进行准确的状态估计。这就是我们本章讨论的问题。由于在 SLAM 问题中,同一个点往往会被一个相机在不同的时间内多次观测,同一个相机在每个时刻观测到的点也不止一个。这些因素交织在一起,使我们拥有了更多的约束,最终能够较好地从噪声数据中恢复出我们需要的东西。

1. 最大后验与最大似然

        SLAM模型由两个方程构成:      (与kalman filter类似)  Xk 乃是相机的位姿。我们可以使用变换矩阵或李代数表示它(由 Tk 或 exp(ξ∧ k )表达)。

        至于观测方程,即针孔相机模型。比如:假设在 xk 处对路标 yj 进行了一次观测,对应到 图像上的像素位置 zk,j,那么,观测方程可以表示成:   这里 K 为相机内参,s 为像素点的距离。同时这里 的 zk,j 和 yj 都必须以齐次坐标来描述。

        在运动和观测方程中,我们通常假设两个噪声项 wk,vk,j 满足零均值的高斯分布。我们希望通过带噪声的数据 z 和 u,推断位姿 x 和地图 y(以 及它们的概率分布),这构成了一个状态估计问题。

       很长一段时间内,研究者们使用滤波器,尤其是扩展卡尔曼滤波器(EKF)求解它。但是卡尔曼滤波器关心当前时刻的状态估计 xk,即只有相邻帧之间的传递,而对之前的状态则不多考虑;相对的,近年来普遍使用的非线性优化方法,使用所有时刻采集到的数据进行状态估计,并被认为优于传统的滤波器,成为当前视觉 SLAM 的主流方法。

      概率论上:对机器人状态的估计,就是求已知输入数据 u 和观测数据 z 的条件下,计算状态 x 的条件概率分布:当我们没有测量运动的传感器(u就是IMU的读数), 只有一张张的图像时,即只考虑观测方程带来的数据时,相当于估计 P(x|z) 的条件概率分布。利用贝叶斯法则,有:

      贝叶斯法则左侧通常称为后验概率。它右侧的 P(z|x) 称为似然,另一部分 P(x) 称 为先验。直接求后验分布是困难的,但是求一个状态最优估计,使得在该状态下,后验概 率最大化(Maximize a Posterior,MAP),则是可行的:

                                     

2. 最小二乘法

      对于某一次观测:假设了噪声项为了计算使它最大化的 xk, yj,我们往往使用最小化负对数的方 式,来求一个高斯分布的最大似然。(这是在 求出似然函数概率 的最大概率值-->等价于求  后验函数概率 的最大概率值)取它的负对数,则变为:。       

       对原分布求最大化相当于对负对数求最小化。第一项与 x 无 关,可以略去。于是,只要最小化右侧的二次型项,就得到了对状态的最大似然估计。代 入 SLAM 的观测模型,相当于我们在求:

       该式等价于最小化噪声项(即误差)的平方(Σ 范数意义下)。我们现在将运动方程和观测方程同时考虑,不再只单单考虑观测方程。我们定义数据与估计值之间的误差: 

       并求该误差的平方之和:        这就得到了一个总体意义下的最小二乘问题(Least Square Problem)。我们明白它的最优 解等价于状态的最大似然估计。直观来讲,由于噪声的存在,当我们把估计的轨迹与地图 代入 SLAM 的运动、观测方程中时,它们并不会完美的成立。这时候怎么办呢?我们把状态的估计值(函数中的参数)进行微调,使得整体的误差下降一些。当然这个下降也有限度,它一般会到达 一个极小值。这就是一个典型非线性优化的过程。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值