libtorch部署yolov5 CPU推理时间和GPU推理平均时间对比

该博客对比了libtorch部署Yolov5模型在640 * 640图片上的GPU和CPU推理时间,结果显示GPU速度是CPU的21.5倍。此外,探讨了深度学习在检测直线宽度、灰度值差等方面的要求,并分享了7543 * 4712大图处理的效率优化策略,如通过裁剪减少推理时间。使用裁剪方法后,GPU预处理和推理平均时间降至90ms,而未裁剪的GPU推理时间为8724ms。还提到了tensorRT部署的时间为996.172ms。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

libtorch 部署640 * 640图片GPU推理时间:
在这里插入图片描述
libtorch 部署640 * 640图片CPU推理时间:
在这里插入图片描述
gpu推理时间比Cpu快21.5倍。

深度学习查找直线宽度最小达到4个像素,5*5像素大小可以找到,但是置信度可能达到0.03,灰度值偏差8-10左右时候目标可以被找到,置信度达到0.3左右。
一般查找到最小灰度值差8左右。

7543 * 4712大小整张图片读取平均时间:278ms
在这里插入图片描述
7543 * 4712大小图片libtorch部署Cpu推理平均时间:7.145s
利用裁剪方法(将图片长宽除640,得到96张图片)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖子工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值