网上看到这个
MAXIEYE周圣砚:欲靠单目视觉挑战激光雷达
搜了一下,感觉应该就是这个工程,https://github.com/ialhashim/DenseDepth
宣传的检测效果
我网上搜一张图片,运行一下效果大致如下:
检测的准不准,自己判断了,我进行了一点点修改,只是把数据源从单张图片改为了从摄像头获取,
新建camera_test.py
import os
import glob
import argparse
import matplotlib
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Keras / TensorFlow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '5'
from keras.models import load_model
from layers import BilinearUpSampling2D
from utils import predict, load_images, display_images, color_rescale
from matplotlib import pyplot as plt
# Argument Parser
parser = argparse.ArgumentParser(description='High Quality Monocular Depth Estimation via Transfer Learning')
parser.add_argument('--model', default='nyu.h5', type=str, help='Trained Keras model file.')
args = parser.parse_args()
# Custom object needed for inference and training
custom_objects = {'BilinearUpSampling2D': BilinearUpSampling2D, 'depth_loss_function': None}
print('Loading model...')
# Load model into GPU / CPU
model = load_model(args.model, custom_objects=custom_objects, compile=False)
print('\nModel loaded ({0}).'.format(args.model))
cap = cv2.VideoCapture(0)
while True:
# frame = cv2.imread("examples/626_image.png")
ret, frame = cap.read()
cv2.imshow("test", frame)
frame = np.clip(np.asarray(frame[...,::-1], dtype=float) / 255, 0, 1)
# Compute results
outputs = predict(model, frame[np.newaxis, :])
cv2.imshow("depth", color_rescale(outputs[0]))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
修改utils.py
import numpy as np
from PIL import Image
import cv2
import matplotlib.pyplot as plt
plasma = plt.get_cmap('plasma')
def DepthNorm(x, maxDepth):
return maxDepth / x
def predict(model, images, minDepth=10, maxDepth=1000, batch_size=2):
# Support multiple RGBs, one RGB image, even grayscale
if len(images.shape) < 3: images = np.stack((images,images,images), axis=2)
if len(images.shape) < 4: images = images.reshape((1, images.shape[0], images.shape[1], images.shape[2]))
# Compute predictions
predictions = model.predict(images, batch_size=batch_size)
# Put in expected range
return np.clip(DepthNorm(predictions, maxDepth=maxDepth), minDepth, maxDepth) / maxDepth
def scale_up(scale, images):
from skimage.transform import resize
scaled = []
for i in range(len(images)):
img = images[i]
output_shape = (scale * img.shape[0], scale * img.shape[1])
scaled.append( resize(img, output_shape, order=1, preserve_range=True, mode='reflect', anti_aliasing=True ) )
return np.stack(scaled)
def load_images(image_files):
loaded_images = []
for file in image_files:
x = np.clip(np.asarray(Image.open( file ), dtype=float) / 255, 0, 1)
loaded_images.append(x)
return np.stack(loaded_images, axis=0)
def to_multichannel(i):
if i.shape[2] == 3:
return i
i = i[:,:,0]
print(i.shape)
return np.stack((i,i,i), axis=2)
def color_rescale(img):
rescaled = img[:,:,0]
print(np.min(rescaled))
rescaled = rescaled - np.min(rescaled)
print(np.max(rescaled))
rescaled = rescaled / np.max(rescaled)
return plasma(rescaled)[:,:,:3]
def display_images(outputs, inputs=None, gt=None, is_colormap=True, is_rescale=True):
import skimage
from skimage.transform import resize
shape = (outputs[0].shape[0], outputs[0].shape[1], 3)
all_images = []
for i in range(outputs.shape[0]):
imgs = []
if isinstance(inputs, (list, tuple, np.ndarray)):
x = to_multichannel(inputs[i])
x = resize(x, shape, preserve_range=True, mode='reflect', anti_aliasing=True )
imgs.append(x)
if isinstance(gt, (list, tuple, np.ndarray)):
x = to_multichannel(gt[i])
x = resize(x, shape, preserve_range=True, mode='reflect', anti_aliasing=True )
imgs.append(x)
if is_colormap:
imgs.append(color_rescale(outputs[i]))
else:
imgs.append(to_multichannel(outputs[i]))
img_set = np.hstack(imgs)
all_images.append(img_set)
all_images = np.stack(all_images)
return skimage.util.montage(all_images, multichannel=True, fill=(0,0,0))
def save_images(filename, outputs, inputs=None, gt=None, is_colormap=True, is_rescale=False):
montage = display_images(outputs, inputs, is_colormap, is_rescale)
im = Image.fromarray(np.uint8(montage*255))
im.save(filename)
def load_test_data(test_data_zip_file='nyu_test.zip'):
print('Loading test data...', end='')
import numpy as np
from data import extract_zip
data = extract_zip(test_data_zip_file)
from io import BytesIO
rgb = np.load(BytesIO(data['eigen_test_rgb.npy']))
depth = np.load(BytesIO(data['eigen_test_depth.npy']))
crop = np.load(BytesIO(data['eigen_test_crop.npy']))
print('Test data loaded.\n')
return {'rgb':rgb, 'depth':depth, 'crop':crop}
def compute_errors(gt, pred):
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25 ).mean()
a2 = (thresh < 1.25 ** 2).mean()
a3 = (thresh < 1.25 ** 3).mean()
abs_rel = np.mean(np.abs(gt - pred) / gt)
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
log_10 = (np.abs(np.log10(gt)-np.log10(pred))).mean()
return a1, a2, a3, abs_rel, rmse, log_10
def evaluate(model, rgb, depth, crop, batch_size=6, verbose=False):
N = len(rgb)
bs = batch_size
predictions = []
testSetDepths = []
for i in range(N//bs):
x = rgb[(i)*bs:(i+1)*bs,:,:,:]
# Compute results
true_y = depth[(i)*bs:(i+1)*bs,:,:]
pred_y = scale_up(2, predict(model, x/255, minDepth=10, maxDepth=1000, batch_size=bs)[:,:,:,0]) * 10.0
# Test time augmentation: mirror image estimate
pred_y_flip = scale_up(2, predict(model, x[...,::-1,:]/255, minDepth=10, maxDepth=1000, batch_size=bs)[:,:,:,0]) * 10.0
# Crop based on Eigen et al. crop
true_y = true_y[:,crop[0]:crop[1]+1, crop[2]:crop[3]+1]
pred_y = pred_y[:,crop[0]:crop[1]+1, crop[2]:crop[3]+1]
pred_y_flip = pred_y_flip[:,crop[0]:crop[1]+1, crop[2]:crop[3]+1]
# Compute errors per image in batch
for j in range(len(true_y)):
predictions.append( (0.5 * pred_y[j]) + (0.5 * np.fliplr(pred_y_flip[j])) )
testSetDepths.append( true_y[j] )
predictions = np.stack(predictions, axis=0)
testSetDepths = np.stack(testSetDepths, axis=0)
e = compute_errors(predictions, testSetDepths)
if verbose:
print("{:>10}, {:>10}, {:>10}, {:>10}, {:>10}, {:>10}".format('a1', 'a2', 'a3', 'rel', 'rms', 'log_10'))
print("{:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}, {:10.4f}".format(e[0],e[1],e[2],e[3],e[4],e[5]))
return e