2.predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Conv Architecture

predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture

论文在这儿

大体思想

这篇论文是上一篇论文的改进。使用单个多尺度卷积网络架构处理三种不同的计算机视觉任务:深度预测、表面法线估计和语义标记。网络结构一共包含三个stage的网络,scale1的输入与池化后的原图片concatenate,scale2的输入与池化后的原图片进行concatenate。相对于2014年的论文Depth Map Prediction from a Single Image using a Multi-Scale Deep Network中没有输出像素级深度预测的问题,新增了scale3用来unsample。
在这里插入图片描述
在这里插入图片描述
Combining Depth and Normals: We combine both depths and normals networks together to share computation, creating a network using a single scale 1 stack, but separate scale 2 and 3 stacks. Thus we predict both depth and normals at the same time, given an RGB image.

1.scale解释
①Scale1-Full-Image:

scale1输出的是整个图像区域的粗特征预测,得到feature map。(它总共有两种,一种AlexNet,一种是VGG)到layer1.6为止。然后用1x1的卷积核来降维,减少计算数量。

②Scale2-Predication:

得到预测图。语义系统的输入是ground truth的depth和normal vector,作者曾尝试使用预测得到depth和normal,但联合训练scale1和scale2得到结果几乎无提升,但depth等用来单独训练语义scale2则有效。作者认为这是因为基于语义的系统也能学习到depth和normal vector的相关性。

③Scale3-Higher Resolution

使得预测图片的分辨率变高同时将结果进一步的精细化,得到更高清的输出。相当于up-sample过程

2.loss function
①Depth loss:

在这里插入图片描述
D是预测,D是ground-truth。d=D-D
可见相比eigen2014年的文章,损失函数增加了一个水平和竖直方向上梯度的抑制。这样使得得到的结果更加平滑,因此本文的深度估计,语义分割,都不必对结果进行超像素处理或平滑处理。

②Surface Normals loss:

在这里插入图片描述
N:the predicted vector maps
N*:ground truth normal vector mapsthe sums again run over valid pixels
判断法向的预测值和真实值的差别,使用的是法向量内积:

③Semantic Labels loss:

在这里插入图片描述
where在这里插入图片描述 is the class prediction at pixel i given the output z of the final convolutional linear layer

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值