American Option Pricing via Longstaff and Schwartz (2001)

这篇博客介绍了如何利用Python实现Longstaff和Schwartz (2001)提出的算法来模拟美式期权的价格。通过设置初始股票价格、到期时间、无风险利率、波动率等参数,模拟股票路径,并应用最少平方回归计算预期持有价值,最终确定期权在各个时间点的价值,从而得到美式期权的定价结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
import matplotlib.pyplot as plt
import numpy.random as npr

def gen_sn(M, I,  anti_paths=True, mo_match=True):
    if anti_paths is True:
        sn = npr.standard_normal((M+1, I/2))
        sn = np.concatenate((sn,-sn), axis=1)
    else:
        sn = npr.standard_normal((M+1, I))
    
    if mo_match is True:
        sn = (sn-sn.mean())/sn.std()
    
    return sn

def gbm_mcs_amer(K, option='C'):
    # set model paramters
    S0 = 100    # initial stock level
    T = 1.0     # time to maturity
    r = 0.05    # risk free rate
    vol = 0.20  # volatility 
    M = 1000    # time stpes
    
    dt = T/M
    df = np.exp(-r*dt)
    
    # simulation of stock levels
    S = np.zeros((M+1, I))
    S[0] = S0
    rn = gen_sn(M, I)
    
    for t in range(1, M+1):
        S[t] = S[t-1]*np.exp((r-0.5*vol**2)*dt+vol*np.sqrt(dt)*rn[t])
    
### 关于用于拥塞管理和电压支持的分布位置边际定价(DLMP) DLMP,即Distribution Locational Marginal Pricing,在电力系统中作为一种有效工具被广泛采用来处理配电网中的拥塞和提供必要的电压支撑。这种方法通过计算各个节点上的电价,从而在一定范围内调节供需关系,有助于维持整个电力系统的稳定运行[^1]。 对于三相不平衡配电系统而言,为了适应DG(分布式发电)渗透率的增长以及解决传统管理方式所面临的挑战,借鉴了输电网络与批发市场的经验引入了DLMP机制作为经济信号给市场参与者以减少系统成本并缓解不稳定性的影响。具体来说,在这类复杂的环境中,DLMP可以细分为多个组成部分,包括但不限于有功功率平衡、无功功率补偿、线路损耗分摊及电压水平调整等方面的内容[^2]。 考虑到配电网中存在的电阻抗比(R/X)较高且存在不对称特性等问题使得DLMP的实际运算变得更为棘手。因此,研究人员提出了基于迭代线性化的DLMP算法,并利用MATLAB软件环境配合Gurobi求解器实现了对含有多重约束条件下的最优潮流问题的有效求解过程。此外,还采用了SOCP(Second Order Cone Programming)技术改进了原有的LinDistFlow模型精度,进一步提高了DLMP方案的应用价值[^3]。 ```matlab % 下面是一个简单的MATLAB代码片段展示如何设置并调用Gurobi求解器来进行DLMP计算 model.A = spalloc(...); % 定义稀疏矩阵A表示约束系数 model.obj = ... ; % 设置目标函数向量obj model.rhs = ... ; % 设定右侧常数项rhs result = gurobi(model); disp(result.x); % 输出优化变量的结果 ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值