01 参考答案
一、信号采样与恢复
1、信号的奈奎斯特频率(必做题)
□ 解答:
(1) 0.5 ω 0 0.5{\omega _0} 0.5ω0
(2) 3 ω 0 {\omega _0} ω0
(3) ω 0 {\omega _0} ω0
(4) 3 ω 0 3{\omega _0} 3ω0
(5) ω 0 {\omega _0} ω0
2、信号恢复时间间隔(选做题)
□ 解答:
信号 y 1 ( t ) {y_1}\left( t \right) y1(t) 是两个信号乘积, 对应的频率是两个信号频谱的卷积。 这样 y 1 ( t ) {y_1}\left( t \right) y1(t) 的最大角频率为 ω 1 + ω 2 {\omega _1} + {\omega _2} ω1+ω2 ; 对它进行采样, 对应的所需要最小采样频率等于 ( ω 1 + ω 2 ) / π \left( {{\omega _1} + {\omega _2}} \right)/\pi (ω1+ω2)/π 。 对应的采样最大间隔T:
信号
y
2
(
t
)
{y_2}\left( t \right)
y2(t) 是两个信号的卷积。 对应的频谱是两个信号频谱的乘积。 这样,
y
2
(
t
)
{y_2}\left( t \right)
y2(t) 的频谱范围等于
min
(
ω
1
,
ω
2
)
\min \left( {{\omega _1},{\omega _2}} \right)
min(ω1,ω2) 。 因为
ω
1
<
ω
2
{\omega _1} < {\omega _2}
ω1<ω2 , 所以
y
2
(
t
)
{y_2}\left( t \right)
y2(t) 的最大角频率等于
ω
1
{\omega _1}
ω1 。 由此可以判断, 它所对应的最大采样间隔T:
3、信号采样分析
(1)
□ 解答:
(1)
先绘制出 f 1 ( t ) = 3 cos 2 π t {f_1}\left( t \right) = 3\cos 2\pi t f1(t)=3cos2πt 对应的频谱 F 1 ( ω ) {F_1}\left( \omega \right) F1(ω) :
信号 f ( t ) = 3 ⋅ cos 2 π t ⋅ cos 20 π t f\left( t \right) = 3 \cdot \cos 2\pi t \cdot \cos 20\pi t f(t)=3⋅cos2πt⋅cos20πt 可以看成对 f 1 ( t ) {f_1}\left( t \right) f1(t) 的调制信号。 将上述频谱进行搬移, 变得到信号 f ( t ) f\left( t \right) f(t) 的频谱 F ( ω ) F\left( \omega \right) F(ω) :
(2)
采样信号 f s ( t ) {f_s}\left( t \right) fs(t) 的频谱是 f ( t ) f\left( t \right) f(t) 频谱, 按照 ω s = 40 π {\omega _s} = 40\pi ωs=40π 为周期进行周期延拓。
由于 F s ( ω ) {F_s}\left( \omega \right) Fs(ω) 是 F ( ω ) F\left( \omega \right) F(ω) 频谱延拓, 延拓的周期恰好是 前面调试信号频率的两倍。这样, 原来信号的频谱左右延拓之后能够相互重叠。 此时,重叠后的信号频谱又升高了 2倍, 对应的信号频谱的高度就是 3 π 2 × 20 × 2 = 60 π {{3\pi } \over 2} \times 20 \times 2 = 60\pi 23π×20×2=60π 。
下面给出了信号 f ( t ) f\left( t \right) f(t) 以及对应的采样信号 f s ( t ) {f_s}\left( t \right) fs(t) 的波形。
▲ 图1.1.1 信号以及采集信号波形
(3)
为了能够恢复 原来的信号, 低通滤波器的截止频率应该在 22 π 22\pi 22π 到 38 π 38\pi 38π 之间。
(4)
由于 f ( t ) f\left( t \right) f(t) 的最高频率为 22 π 22\pi 22π , 所以对应的采样频率应该是大于最高频率的 2 倍, 对应 22Hz。 但是, 在本题中, 由于信号的频谱具有特殊的线性频谱的结果。 虽然在 20Hz 采样频率下, 但仍然能够将原来的信号进行恢复。
(2)
□ 解答:
(1) 信号 x ( t ) x\left( t \right) x(t) 的最高角频率为 6, 对应的频率为 3 / π 3/\pi 3/π 。
- x ( 4 t ) x\left( {4t} \right) x(4t) 的最高频率为 12 / π 12/\pi 12/π , 对应的奈奎斯特频率为 24 / π 24/\pi 24/π 。
- x ( t / 3 ) x\left( {t/3} \right) x(t/3) 的最高频率为 1 / π 1/\pi 1/π , 对应的奈奎斯特频率为 2 / π 2/\pi 2/π 。
(2) 采样冲击序列 δ T ( t ) {\delta _T}\left( t \right) δT(t) 的周期为 T s = π / 12 {T_s} = \pi /12 Ts=π/12 。 对应的采样频率为 f s = 1 / T s = 12 / π {f_s} = 1/{T_s} = 12/\pi fs=1/Ts=12/π 。 对应的采样角频率为 ω s = 2 π f s = 24 {\omega _s} = 2\pi {f_s} = 24 ωs=2πfs=24 。
下面分别绘制出 x s ( t ) , x s ( 4 t ) , x s ( t / 3 ) {x_s}\left( t \right),{x_s}\left( {4t} \right),{x_s}\left( {t/3} \right) xs(t),xs(4t),xs(t/3) 对应的频率。
x s ( t ) {x_s}\left( t \right) xs(t) 的频谱为:
x
s
(
4
t
)
{x_s}\left( {4t} \right)
xs(4t) 的频谱为:
x s ( t / 3 ) {x_s}\left( {t/3} \right) xs(t/3) 的频谱为:
(3)
□ 解答:
。
(1) 根据 f 1 ( t ) , f 2 ( t ) f_1 \left( t \right),f_2 \left( t \right) f1(t),f2(t) 的表达式, 可以知道它们的频谱是矩形频谱, 最大频率分别是: F 1 m = 1000 π , F 2 m = 2000 π F_{1m} = 1000\pi ,\,\,F_{2m} = 2000\pi F1m=1000π,F2m=2000π 。
▲ 图1.3.3 f1(t),f2(t)的频谱示意图
根据系统框图可知 f ( t ) = f 1 ( t ) ⋅ f 2 ( t ) f\left( t \right) = f_1 \left( t \right) \cdot f_2 \left( t \right) f(t)=f1(t)⋅f2(t) ,所以 f ( t ) f\left( t \right) f(t) 对应的频谱最大频率等于 f 1 ( t ) , f 2 ( t ) f_1 \left( t \right),f_2 \left( t \right) f1(t),f2(t) 最高频率之和:
因此,对于该信号最大抽样间隔为:
(2)
下面先绘制出
f
(
t
)
f\left( t \right)
f(t) 的频谱。
▲ 图1.3.4 f(t)的频谱示意图
经过采样之后, T s = 1 / 3000 T_s = 1/3000 Ts=1/3000 采样之后, 采样信号 f s ( t ) f_s \left( t \right) fs(t) 的频谱为:
▲ 图1.3.5 fs(t)的频谱示意图
二、平顶采样
□ 解答:
(1) 使用周期三角脉冲信号
f
(
t
)
f\left( t \right)
f(t) 对于
g
(
t
)
g\left( t \right)
g(t) 进行平顶采样,得到
g
s
(
t
)
=
∑
n
=
−
∞
+
∞
g
(
n
T
s
)
f
0
(
t
−
n
T
s
)
g_s \left( t \right) = \sum\limits_{n = - \infty }^{ + \infty } {g\left( {nT_s } \right)f_0 \left( {t - nT_s } \right)}
gs(t)=n=−∞∑+∞g(nTs)f0(t−nTs) ,可以表示成:
其中
f
0
(
t
)
f_0 \left( t \right)
f0(t) 是周期三角脉冲信号的一个周期内的信号。 对于
∑
n
=
−
∞
+
∞
g
(
n
T
s
)
⋅
δ
(
t
−
n
T
s
)
\sum\limits_{n = - \infty }^{ + \infty } {g\left( {nT_s } \right) \cdot \delta \left( {t - nT_s } \right)}
n=−∞∑+∞g(nTs)⋅δ(t−nTs) 的频谱是
g
(
t
)
g\left( t \right)
g(t) 频谱的周期延拓:
f
0
(
t
)
f_0 \left( t \right)
f0(t) 的频谱
F
0
(
ω
)
F_0 \left( \omega \right)
F0(ω) 为:
所以 g s ( t ) g_s \left( t \right) gs(t) 的频谱为:
可以看到 G s ( ω ) G_s \left( \omega \right) Gs(ω) 对应的频谱波形是将 G ( ω ) G\left( \omega \right) G(ω) 周期延拓制后, 再乘以 S a 2 ( ω τ 4 ) Sa^2 \left( {{{\omega \tau } \over 4}} \right) Sa2(4ωτ) 。 对应的频谱波形如下:
▲ 图1.3.9 被采样后gs(t)的频谱示意图
上面频谱波形绘制过程中,对应的参数分别为: ω m = 1 , τ = π / 2 \omega _m = 1,\tau = \pi /2 ωm=1,τ=π/2 ,利用 Python 绘制出的频谱波形图。 未来能够显示出频谱波形的特点, 频谱水平方向压缩了。
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY -- by Dr. ZhuoQing 2023-04-18
#
# Note:
#============================================================
from headm import *
o = linspace(-15,15,100000)
om = 1
tao = pi/om/2
ts = 2*pi/om/2
Gs = 1-arccos(cos(o*2*pi/2/om))/pi
Ts = pi*tao/ts*sinc(o*tao/4/pi)**2
G = Ts*Gs
plt.plot(o, G, lw=3, label='Gs(o)')
plt.plot(o, Ts, lw=1, label='Period G')
plt.plot(o, Gs, lw=1, label='F0(o)')
plt.xlabel("Frequency(rad/s)")
plt.ylabel("Amplitude")
plt.legend(loc='upper right')
plt.axis([min(o)-(max(o)-min(o))/20, max(o)+(max(o)-min(o))/20, -1.00, 2.50])
plt.grid(False)
plt.tight_layout()
plt.show()
#------------------------------------------------------------
# END OF FILE : TEST1.PY
#============================================================
(2) 根据 g s ( t ) g_s \left( t \right) gs(t) 频谱的表达式, 可以看到如果需要恢复出 g ( t ) g\left( t \right) g(t) 的频谱, 需要将 g s ( t ) g_s \left( t \right) gs(t) 通过如下频率特性的低通滤波器。 截取其中 ± ω m \pm \omega _m ±ωm 之间的频谱, 并除以 π τ T s ⋅ S a 2 ω τ 4 {{\pi \tau } \over {T_s }} \cdot Sa^2 {{\omega \tau } \over 4} Tsπτ⋅Sa24ωτ 。
三、有限窄带信号的采样(选做)
□ 解答:
如果希望从采样数据中无损恢复信号 f ( t ) f\left( t \right) f(t) , 充分必要条件是在信号的频谱周期延拓之后, 信号频谱没有发生“混淆” 现象。
为了保证信号能够恢复, 此时要求周期延拓之后的信号频谱不能够相互混叠。取 m = i n t ( N ) m = {\mathop{\rm int}} \left( N \right) m=int(N) 为 小于 N的最大整数。 将 ± ω 2 \pm \omega _2 ±ω2 之间的频谱范围分成了 2m 份。
按照 2 ω 2 / m 2\omega _2 /m 2ω2/m 对应的频率进行采样, 原来的频谱按照 2 ω 2 / m 2\omega _2 /m 2ω2/m 的周期左右延拓。此时,对应的延拓之后的频谱就会相互交错而不会混叠。 下面的示意图对此进行了描述。 红色和蓝色分别表示原来左右两个频谱延拓后所在的位置, 可以看到它们之间恰好相互交错,并不重叠。
▲ 图1.4.1 周期延拓之后的频谱
四、信号恢复补偿
1、采样信号恢复
□ 解答:
(1) 对信号的一阶保持回复, 可以看成对采样的离散信号 使用 三角脉冲信号进行卷积。 根据题目给定的信号采样参数, 对应的三角脉冲信号的宽度为 0.08 μ s 0.08\mu s 0.08μs (对应 12.5MHz 的周期)。
对于频谱为 5MHz, 幅度为 1 的正弦波, 它的频谱为:
由于 F 0 ( ω ) F_0 \left( \omega \right) F0(ω) 是一个纯虚数, 所以下面绘制出 j ⋅ F 0 ( ω ) j \cdot F_0 \left( \omega \right) j⋅F0(ω) 对应的波形:
▲ 图1.1.2 正弦波的频谱
对其进行 25MHz 的理想采样, 对应的频谱为:
对应的频谱绘制如下, 为了显示出周期延拓,频率轴的尺度进行了压缩。
▲ 图1.1.3 理想采样信号频谱
对采样信号进行一阶保持, 等效于和采样周期等宽的三角脉冲信号进行卷积。 如下图所示:
▲ 图1.1.4 一阶保持对应的插值三角脉冲信号
该信号的频谱为:
因此, 一阶保持信号的频谱为:
可以看出一阶保持信号的频谱是在原来周期冲击频谱的基础上, 前面乘以
S
a
2
(
5
×
1
0
−
8
ω
)
Sa^2 \left( {5 \times 10^{ - 8} \omega } \right)
Sa2(5×10−8ω) 加权系数,下面将该 sinc 函数与周期频谱绘制在一起, 也可以看到恢复信号的频谱主要包含有原信号
F
0
(
ω
)
F_0 \left( \omega \right)
F0(ω) 以及高次谐波, 但高次谐波分量被衰减较多(随着
ω
2
\omega ^2
ω2 分之一衰减)。 所以绘制出来的信号频谱应该与原始 5MHz 正弦波频谱基本上一样, 高次谐波看不出来。
▲ 图1.1.5 将Sinc函数加权信号与理想采样对应的周期频谱绘制在一起
下面是将一阶保持恢复信号的频谱绘制出来, 对应的高频谐波频谱省略了, 它们太小了。 请注意, 基波冲激频谱的强度,由原来的 π \pi π 变成了 10 / π 10/\pi 10/π , 幅值有所衰减。
▲ 图1.1.6 一阶保持信号频谱(省略了高斯谐波)
(2) 从一阶保持波形中,恢复原来的 5MHz 的正弦波,对应的补偿滤波器的频谱特性如下:
2、采样信号的频谱
□ 解答:
查找典型信号频谱, 可以分别得到单个三角脉冲以及升余弦脉冲信号的频谱表达式。 单个三角脉冲信号的频谱为:
单个升余弦脉冲信号的频谱为:
将它们使用
T
s
=
τ
/
10
T_s = \tau /10
Ts=τ/10 进行采样后,对应的频谱为:
下面使用 Python 程序绘制上面频谱图。 为了便于绘制, 设置频谱中的参数 E = 1 , τ = 1 E = 1,\,\,\tau = 1 E=1,τ=1 。
▲ 图1.1.7 三角脉冲信号采样信号频谱示意图
▲ 图1.1.8 升余弦脉冲信号采样信号频谱示意图
from headm import *
t = linspace(-100, 100, 10000)
f = 0*t
for i in range(100):
n = i - 50
o = t-20*pi*n
f = f + 5*sinc(o/2/pi)/(1-(o/2/pi)**2)
plt.plot(t, f, lw=3)
plt.xlabel("t")
plt.ylabel("f(t)")
plt.axis([min(t)-(max(t)-min(t))/20, max(t)+(max(t)-min(t))/20, -6.00, 10.00])
plt.grid(False)
plt.tight_layout()
plt.show()
■ 相关文献链接:
● 相关图表链接: