引言
学爬虫的同学都知道,Scrapy是一个非常好用的框架,可以大大的简化我们编写代码的工作量。今天我们就从使用Scrapy爬取果壳问答。
需求分析
爬取果壳问答中精彩回答的标题和答案。
知识点
爬取数据:Scrapy
数据库:Mongo
创建项目和爬虫
创建项目:
scrapy的创建项目命令为startproject,这里我们使用这个命令创建一个果壳的项目。
创建完项目之后,进入项目文件夹创建爬虫。创建爬虫的命令为genspider。这里我们使用crawl模板来创建spider。
部分代码
创建完成项目和爬虫后,我们使用IDE打开项目。首先修改settings文件。将ROBOTSTXT_OBEY设置成False,将User-Agent的注释打开并根据自身使用的浏览器进行设置。将DOWNLOAD_DELAY设置为1.(这里是下载延时,为了防止被封IP,这里设置延时1秒,可以根据实际情况调整)
Items文件:在Items文件中,我们创建三个属性,分别是question、answer和_id。其中_id是用来存入mongoDB中使用。
class GuokrItem(scrapy.Item):
# define the fields for your item here like:
# name = scrapy.Field()
question = scrapy.Field()
answer = scrapy.Field()
_id = scrapy.Field()
Spider文件:在Spider文件中,我们需要补齐两个rule,第一个规则是从列表中筛选出其他列表页面的url,第二个规则是从列表中筛选出问题的详细地址。
在parse_item中实现信息的提取,这里我们使用css选择器来提取想要的内容,提取完成之后,将item返回。
# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from Guokr.items import GuokrItem
class GuokrSpider(CrawlSpider):
name = 'guokr'
allowed_domains = ['guokr.com']
start_urls = ['https://www.guokr.com/ask/highlight/?page=1']
rules = (
Rule(LinkExtractor(allow=r'page='), follow=True),
Rule(LinkExtractor(allow=r'question'), callback='parse_item', follow=False),
)
def parse_item(self, response):
item = GuokrItem()
item['answer'] = response.css(".answer-txt p::text").extract()
item['question'] = response.css("#articleTitle::text").extract_first()
yield item
Pipelines文件:在pipelines文件中我们需要实现内容的保存,这里提供了两个方式,一种是写到本地txt文件,一种是写到mongoDB中。
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
from scrapy.exporters import JsonItemExporter
import pymongo
class GuokrPipeline(object):
def open_spider(self,spider):
self.file = open('guokr.txt','wb')
self.exporter = JsonItemExporter(self.file)
self.exporter.start_exporting()
self.con = pymongo.MongoClient()
self.database = self.con['guokr']
self.conllection = self.database['guokr']
def process_item(self, item, spider):
self.exporter.export_item(item)
self.conllection.insert_one(item)
def close_spider(self,spider):
self.exporter.finish_exporting()
self.file.close()
self.con.close()
最后我们需要在settings文件中打开pipelines。(此步略)
部分结果:
至此,我们使用了很少的代码就完成了对果壳问答的爬取。
源码
链接:链接:https://pan.baidu.com/s/1MRnkfKIAvsxECMRqygdfCA 提取码 提取码:ls65