线性代数学习笔记29

本文探讨线性变换的概念,包括线性变换的性质和矩阵表示。通过实例解析了投影、平移、求模长和旋转是否为线性变换。介绍了如何确定线性变换的矩阵A,并指出矩阵乘法对应线性变换的乘积。文章还讨论了基变换在图像压缩中的应用,指出傅立叶基和小波变换因计算效率和压缩性成为优选方案。
摘要由CSDN通过智能技术生成

这里第三十一、二课-线性变换及对应矩阵、基变换和图像压缩

线性变换

我们之前学习了零空间、行空间、行列式、特征值,都是源于对于矩阵的了解,但是矩阵只是在给定坐标下对线性变换的描述,所以线性代数是核心

变换我们有如
T : R 2 − > R 2 , 这 是 一 种 映 射 , 一 个 输 入 对 应 着 一 个 输 出 T:R^2->R^2,这是一种映射,一个输入对应着一个输出 T:R2>R2

线性变换中,必须要满足线性即,对于变换T有:
1 、 T ( w + v ) = T ( w ) + T ( v ) 1、T(w+v)=T(w)+T(v) 1T(w+v)=T(w)+T(v)
2 、 T ( c w ) = c T ( w ) 2、T(cw)=cT(w) 2T(cw)=cT(w)

下面是一些例子

  • 1、投影是线性变换,满足上面两个性质

  • 2、平移变换不是线性变换,不满足上面两个性质

  • 3、求模长不是线性变换,不满足上面两个性质,比如 c = − 2 c=-2 c=2时不满足

  • 4、旋转45是线性变换,满足上面两个性质

  • 同时,我们可以用 T ( x ) = A x T(x)=Ax T(x)=AxA矩阵来描述这种线性变换,即每一个变换都对应着一个矩阵A

  • 假设T表示线性变换,对于两个线性无关的向量 v 1 , v 2 v_1,v_2 v1,v2
    v1,v2线性组合的所有向量可以通过v1,v2计算出来,即
    T ( v ) = T ( c 1 v 1 + c 2 v 2 ) = c 1 T ( v 1 ) + c 2 T ( v 2 ) T(v)=T(c_1v_1+c_2v_2) = c_1T(v_1)+c_2T(v_2) T(v)=T(c1v1+c2v2)=c1T(v1)+c2T(v2)

由此我们如果给定一组基向量,求解出T(v1)~T(vn)则我们有可以求解空间内任意的变换
T ( v ) = T ( c 1 v 1 + c 2 v 2 + c 3 v 3 + c 4 v 4 + … … ) = c 1 T ( v 1 ) + c 2 T ( v 2 ) + c 3 T ( v 3 ) + c 4 T ( v 4 ) + … … T(v)= T(c_1v_1+c_2v_2+c_3v_3+c_4v_4+……)=c_1T(v_1)+c_2T(v_2)+c_3T(v_3)+c_4T(v_4)+…… T(v)=T(c1v1+c2v2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值