从傅里叶级数到傅里叶变换


傅里叶级数

为什么要有傅里叶级数

傅里叶级数(Fourier Series)是用一系列正弦波(Sinusoid)来描述任何周期函数的一种方法。图1中的三条曲线分别是周期为1秒的方波,正弦波和三角波。由于正弦和余弦只有相位差,故统称正弦波。 

方波,正弦波,三角波 
图1. 周期为1秒的方波,正弦波,三角波

在介绍傅里叶级数之前,让我们先来回顾一下级数的概念。级数是用一个无穷数列的加和来逼急一个数。函数项级数则是用一个函数列的加和来逼近一个函数。设 u1(x),u2(x),u3(x),,un(x), 为定义在 (a,b) 内的函数序列。则 

n=1u(x)=u1(x)+u2(x)+u3(x)++un(x)+

称为定义在 (a,b) 内的函数项级数。为什么要把一个看似简单的函数分解成一大堆函数的和呢?因为有些函数直接研究起来比较困难,以某种形式的级数进行展开,对里面的每一项单独研究,会变得更简单,也使得计算更加容易。级数有千千万万种,如泰勒级数,等比级数,调和级数等等。但是有一种由正弦函数组合而成的级数,显得尤为重要。这就是傅里叶级数。为什么傅里叶技术格外重要呢?这要归功于正弦函数优秀的性质。我们将函数展开成级数是为了获得更加简便和易于计算的形式。而当正弦波输入一个系统时,输出仍然是一个正弦波,只有振幅、相位和频率会发生变化,而不像其他的级数会使函数形式本身发生改变。这使得傅里叶级数在分析函数时具有了巨大的优势。此外,由于通信系统中电磁场与电磁波,以及诸多物理原理都与正弦信号有关,所以造就了傅里叶级数如此重要的地位。

傅里叶级数是怎么来的

傅里叶级数的得出

假如有两个周期函数(Periodic Function),它们的频率分别为 f1 f2 ,那么他们的叠加还是一个周期函数吗?频率又是多少呢?显然,两个不同频率的周期函数叠加仍然是一个周期函数,叠加后函数的周期是两个原函数周期的最小公倍数。因此,当一组频率为 1Hz,2Hz,3Hz,,nHz, 的周期函数叠加时,叠加后的函数频率必然为 1Hz 。然而,如果采用了诸如 1.1Hz,2.5Hz,3,12435Hz 之类频率的级数项,则输出频率将陷入混乱,所以这里只选取如 1Hz,2Hz,3Hz,,nHz, 的频率作为级数项。 1Hz 可以作为基本频率,改写作 fHz , 则级数项将变为 fHz,2fHz,3fHz,,nfHz, 。回想图1中周期为1秒的方波函数,我们可以将它表示成 

f(t)=n=0bnsin(2πnt)nN

然而,上面我们所表示的函数恰好是一个周期为1秒的奇函数。如果用上面的公式来逼近一个偶函数则无法实现。所以,若 f(t) 是一个周期为1秒的偶函数,则 
f(t)=n=0ancos(2πnt)nN

因此,当 f(t) 是一个周期为 T ,频率为 f 的一般函数,既有奇函数成分也有偶函数成分,此外,作为奇函数或偶函数对称点可能相对原点产生位移,易知这个位移不会影响函数的形状,可以用一个常数来表示,为了后续计算方便,这个位移记作 a02 ,则有 
f(t)=a02+n=0[ancos(2πfnt)bnsin(2πfnt)]nN

至此,我们已经得到了傅里叶级数的完整表达形式。

傅里叶级数中参数的确定与函数的正交性

那么如何确定上面公式中的 bn 呢?在这之前,然我们来谈谈什么是函数的正交性。学过线性代数的同学都知道,两个向量的正交是通过内积为零来定义的。而内积则是将向量的对应项相乘再求和来得到的。假设我们有一个任意长度的向量,每两个元素之间的距离无限小,那么我们就可以把这样两个向量看作两个连续的函数。类比内积的概念,两个函数正交也就是将两个函数赋予相同的自变量,再相乘,再做积分,如果积分等于零,则说明这两个函数在积分域上是正交的。

我们高兴的发现,不同频率的三角函数具有如下的正交性。其中 n,mN

T2T2sin(2πfnt)sin(2πfmt)dt=mcos(πTfm)sin(πTfn)ncos(πTfn)sin(πTfm)πf(m2n2)=0T2sin(2πTfn)4πfn=T2nmn=mT2T2cos(2πfnt)cos(2πfmt)dt=mcos(πTfn)sin(πTfm)ncos(πTfm)sin(πTfn)πf(m2n2)=0T2+sin(2πTfm)4πfm=T2nmn=mT2T2sin(2πfnt)cos(2πfmt)dt=0

因此,根据上述三角函数间的正交性,我们可以得出

T2T2f(t)dt=a0T2T2T2f(t)cos(2πfnt)dt=anT2T2T2f(t)sin(2πfnt)dt=bnT2

至此,我们已经求得了所有傅里叶级数的参数。如下:

a0=2TT2T2f(t)dtan=2TT2T2f(t)cos(2πfnt)dtbn=2TT2T2f(t)sin(2πfnt)dt


傅里叶变换

为什么要有傅里叶变换

在上一章,我们已经清楚的知道如何使用傅立叶级数去描述任何一个周期函数,其中傅里叶级数将一个周期函数描述成离散频率正弦函数的组合,即在频域上离散。然而,我们要分析的函数中常常会有非周期函数,这就需要傅里叶变换而不是傅里叶级数来描述这类函数。频域不同于时域,是从另一个角度观察客观世界的一种方式。其将无限动态的世界看成是注定的和静止的。从频域理解世界,更像是上帝看世界的方式。

对于任何一个非周期函数,我们都可以认为其可以通过一个周期函数的周期趋于无穷转化而来。周期趋于无穷也就意味着频率趋于零,以及角速度 ω 趋于零。也就是说,一个非周期函数会通过傅里叶变换被描述成连续的正弦函数的组合,即在频域上连续。基于这个思想,傅里叶级数即将演化成傅里叶变换。

从傅里叶级数到傅里叶变换

傅里叶级数的指数形式

让我们从傅里叶级数开始:

设在以 T 为周期的函数 fT(x) 的连续点处,级数的三角形式为 

fT(x)=a02+n=0[ancos(nωt)bnsin(nωt)]nN

式中,

ω=2πT=2πfa0=2TT2T2f(t)dxan=2TT2T2f(t)cos(2πfnt)dxbn=2TT2T2f(t)sin(2πfnt)dx

为了以后计算的方便,这里使用欧拉公式将傅里叶级数中的正弦项和余弦项整合。

eiθ=cos(θ)+isin(θ)cos(θ)=eiθ+eiθ2sin(θ)=eiθeiθ2i=ieiθeiθ2

sin(θ) cos(θ) 代入傅里叶级数的表达式中,则

fT(x)=a02+n=0[aneinωt+einωt2ibneinωteinωt2]=a02+n=0[anibn2einωt+an+ibn2einωt]

c0cncnwn=a02=1TT2T2fT(x)dx=anibn2=1TT2T2fT(x)cos(nωx)dxiT2T2fT(x)sin(nωx)dx=1TT2T2fT(x)[cos(nωx)isin(nωx)]=1TT2T2fT(x)[einωx+einωx2i(i)einωxeinωx2]=1TT2T2fT(x)einωxdx=an+ibn2=1TT2T2fT(x)einωxdx=nωnZ

代入 fT(x) 有 

fT(x)=c0+n=0(cneiwnx+cneiwnx)=+cneiwnx

至此,我们得到了傅里叶级数的指数形式

fT(x)=1T+T2T2fT(τ)eiwnτdτeiwnx

极限求得傅里叶变换

在为什么要有傅里叶级数一节中,我们已经说过傅里叶变换其实就是傅里叶级数的周期趋近于无穷。因此,假设我们的目标非周期函数为 f(x) ,由傅里叶级数逼近的周期函数为 fT(x) ,则

limT+fT(x)=f(x)=limT+1T+T2T2fT(τ)eiwnτdτeiwnx

nZ

Δw=wnwn1=2πTT=2πΔw

因此,当 T+ 时,有 Δw0 ,则

limT+fT(x)=limΔw012π+T2T2fT(τ)eiwnτdτeiwnxΔw

x 固定时, 12π[T2T2fT(τ)eiwnτdτ]eiwnx 是参数 w 的函数,记作 ΦT(w) ,即

ΦT(w)=12πT2T2fT(τ)eiwτdτeiwx

因此,

f(x)=limΔw0+ΦT(w)Δw

T+ ,即 ω0 Δw0 ΦT(w)Φ(w) 。 
其中,

Φ(w)=12π[+f(τ)eiwτdτ]eiwx

此时 f(x) 可以看作 Φ(w) (,+) 上的积分, f(x)=+Φ(w)dw ,即

f(x)=12π+[+f(τ)eiwτdτ]eiwxdw

因此,将 x 替换成 t ,则 

F(ω)=+f(τ)eiwτdτ=F[f(τ)]f(t)=12π+F(ω)eiωtdω=F1[F(ω)]

从上面两个式子我们可以看出,第一个式子相当于将一个时域函数 f(τ) 变换成了频域函数 F(ω) ,而第二个式子相当于将频域函数 F(ω) 变换为时域函数 f(t) 。那么一个时域函数变换到频域后,再变换回时域,还是不是它自身呢?这个问题就相当于 f(τ)=f(t) 是否成立,也可以说成傅里叶变换是不是一一对应的。下面我们用反证法来探究这个问题。

假设傅里叶变换不是一一对应的。那么应该有

f(τ)f(t)

由于 f(τ) 进行傅里叶变换,为 F(ω) 。若假设成立, f(t) 的傅里叶变换应不一定为 F(ω) 。下面我们来计算 f(t) 的傅里叶变换。

F[f(t)]=F{12π+[+f(τ)eiωτdτ]eiωtdω}=+{12π+[+f(τ)eiωτdτ]eiωtdω}eiwtdt=F[f(τ)]

因此,假设不成立。傅里叶变换具有一一对应性。至此,我们已经完整的得到了傅立叶变换。

总结:傅里叶级数是傅里叶变换的逆函数

傅里叶级数在频域是相当于对应的余和正的系数,在时域就是三角函数求和值的连续显示,傅里叶变换正好相反
  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值