USAD : UnSupervised Anomaly Detection on Multivariate Time Series

IT系统的自动监管是Orange目前面临的一个挑战。考虑到其IT业务的规模和复杂性,随着时间的推移,用于推断正常和异常行为所需的传感器数量急剧增加,使得传统的基于专家经验的监管方法变得缓慢或容易出错。本文提出了一种基于逆训练自编码器的多元时间序列无监督异常检测(USAD)方法。它的自动编码器架构使它能够以一种无监督的方式学习。对抗性训练的使用及其架构使其能够隔离异常,同时提供快速训练。我们通过在5个公共数据集上的实验研究了我们的方法的性质,从而证明了它的鲁棒性、训练速度和较高的异常检测性能。通过使用Orange专有数据进行可行性研究,我们已经能够验证Orange在可扩展性、稳定性、鲁棒性、训练速度和高性能方面的要求

 

框架:

本文提出了一种基于自编码器架构[15]的多元时间序列无监督异常检测(USAD)方法,该方法的学习灵感来自GANs。USAD背后的直觉是其编码器-解码器架构的对抗性训练使其能够学习如何放大包含异常的输入的重构误差,同时获得与基于GANs架构的方法相比的稳定性。它的架构使其快速训练,在可扩展性和算法效率方面满足Orange的期望。

Problem formulation

 

框架

我们提出的非监督异常检测(USAD)方法,被表述为两阶段对抗训练框架中的AE架构。一方面,这允许克服AEs的内在限制,通过训练一个能够识别输入数据何时不包含异常的模型,从而进行良好的重建。另一方面,AE architecture允许在对抗训练中获得稳定性,从而解决了gan中遇到的崩溃和非收敛模式问题。 

USAD由三部分组成:一个编码器网络E和两个解码器网络D1和D2。如图1所示,这三个元素被连接到一个由两个共享同一编码器网络的自动编码器AE1和AE2组成的体系结构中

 公式3中的体系结构分为两个阶段进行训练。

首先,对两种AEs进行训练,学习重建正常输入窗口。其次,两种AEs以对抗性的方式训练,AE1试图欺骗AE2, AE2的目标是学习数据是真实的(直接来自w)还是重构的(来自AE1)

Two-phase training.

Inference

 在检测阶段(算法2),定义异常评分为 

 

EXPERIMENTAL SETUP

 

 Ablation Study

利用SMD、SMAP和MSL数据集,我们研究了USAD两阶段训练的效果。图3展示了USAD(组合)、USAD只进行第一阶段训练(自动编码器)和USAD只进行第二阶段训练(对抗性)在f1评分方面的性能比较。在没有对抗性学习帐户的情况下训练USAD使用方程4中的目标,而抑制自动编码器帐户使用方程5-6中的目标。

 

 Effect of parameters

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值