MetaER-TTE: An Adaptive Meta-learning Model for En Route Travel Time Estimation
En route travel time estimation(En - tte)旨在预测剩余路线上的旅行时间。由于出行的部分和剩余部分通常具有一些共同的特征,如驾驶速度,因此需要探索这些特征,通过有效的适应来提高性能。但由于部分轨迹中采样点较少,这将面临严重的数据稀疏问题。由于具有不同上下文信息的轨迹往往具有不同的特征,现有的ER-TTE元学习方法对所有轨迹使用相同的模型,不能很好地拟合每条轨迹。为此,提出一种新的自适应元学习模型MetaER-TTE。利用软聚类并派生聚类感知的初始化参数,以更好地在具有相似上下文信息的轨迹之间迁移共享知识。此外,采用分布感知的方法进行自适应学习率优化,避免了使用固定学习率指导初始参数时在任务分布不平衡时出现的任务过拟合问题。最后,通过实验验证了MetaER-TTE的优越性。
4 MetaER-TTE
本文介绍所提出的方法:一种自适应的ER-TTE元学习模型,即MetaER-TTE,如图1所示。首先,介绍了基础模型ConSTGAT [Fang等人,2020]。它是一种结合路段关系和交通预测来估计旅行时间的TTE方法。其次,提出了MetaER-TTE模型,该模型支持对每个轨迹进行有效自适应,以实现更好的性能。
MFNP: A Meta-optimized Model for Few-shot Next POI Recommendation
下一个兴趣点(Next Point-of-Interest, POI)推荐对于基于位置的服务具有重要价值。现有的解决方案主要依赖于大量的观测数据,且交互少,对用户来说很脆弱。遗憾的是,少样本下一个兴趣点推荐问题还没有得到很好的研究。文中提出了一种新的元优化模型MFNP,能够快速适应签到记录较少的用户。针对冷启动问题,将元学习中精心设计的特定于用户和特定于区域的任务无缝集成,通过合理融合区域无关的个人偏好和区域相关的人群偏好来捕获区域感知的用户偏好。在对区域依赖的群体偏好建模时,采用基于聚类的自适应网络捕获相似用户的共享偏好以进行知识转移。在2个真实数据集上的实验结果表明,该模型在冷启动用户的下一个兴趣点推荐上优于现有方法。
Fast Variational AutoEncoder with Inverted Multi-Index for Collaborative Filtering
变分自编码器(Variational AutoEncoder, VAE)已被扩展为一种典型的非线性协同过滤方法。然而,vae的瓶颈在于对所有项目进行softmax计算,使得计算损失和梯度所需的项目数量是线性的。由于现实场景中有数百万个项目,这阻碍了实际使用。重要性采样是一种有效的近似方法,基于该方法可以推导出采样后的softmax。然而,现有方法通常使用均匀或流行度采样器作为建议分布,导致梯度估计存在较大偏差。为此,本文建议基于倒排多索引分解基于内积的softmax概率,从而实现亚线性时间和高精度采样。在此基础上,提出了一种用于协同过滤的快速变分自编码器(fast Variational AutoEncoder, FastVAE)。在3个真实数据集上的实验结果表明,FastVAE在采样质量和效率方面均优于最新的基线方法。
DDHH: A Decentralized Deep Learning Framework for Large-scale Heterogeneous Networks
面向图结构信息网络学习节点的向量表示(即嵌入)引起了工业界和学术界的广泛关注。现实世界中的大多数网络表现出复杂和异构的形式,包含节点之间的高阶关系和丰富的语义信息。然而,现有的异构网络嵌入(HNE)框架通常以集中式方式设计,即所有数据存储和学习过程都发生在一台机器上。因此,由于内存、存储和运行时间的高消耗,这些HNE方法在处理大规模网络时表现出严重的性能瓶颈。鉴于此,为了应对大规模HNE任务,具有较强的效率和有效性保证,本文提出了去中心化深度异构超图(Decentralized Deep Heterogeneous Hypergraph, DDHH)嵌入框架。在DDHH中,我们创新性地将一个大型异构网络表述为一个超图,其中的超边可以连接一组语义相似的节点。然后,该框架使用识别出的超边智能地划分异构网络。然后,将得到的每个子网络分配给一个分布式工作节点,该工作节点利用深度信息最大化定理从接收到的分区中局部学习节点嵌入;设计了一种新的嵌入对齐方案,将所有子网络独立学习的节点嵌入精确地投影到公共向量空间上,从而允许下游任务。实验结果表明,DDHH显著提高了现有HNE模型的效率和准确性,并且可以很容易地扩展到大规模异构网络。
所提出的DDHH框架遵循数据并行范式,以分布式方式学习节点嵌入。图2表示了DDHH的工作流程,可以分为三个主要阶段。1)通过对超边进行高效采样,将异构网络转化为超图,然后利用采样后的超边将整个网络划分为多个子网络。2)通过深度信息最大化在分布式服务器上本地学习嵌入。3)将分布式学习的节点嵌入对齐到相同的向量空间,以支持下游任务。
Lane Change Scheduling for Autonomous Vehicle: A Prediction-and-Search Framework
道路车辆自动化是一项新兴的技术,在过去的十年中发展迅速。自动驾驶汽车(AV)给现有的交通基础设施带来了许多跨学科的挑战。本文对自动驾驶车辆何时以及如何变道进行了算法研究,这是车辆自动化领域的一个基本问题,也是大多数"幻影"交通拥堵的根源。本文提出一种预测和搜索框架Cheetah(自动驾驶车辆变道智能),旨在优化自动驾驶车辆的变道操作,同时最小化其对周围车辆的影响。在预测阶段,Cheetah使用深度模型(GAS-LED)从周围车辆的历史轨迹中学习时空动态,并预测它们在不久的将来的相应行动。引入全局注意力机制和状态共享策略,以实现更高的精度和更好的收敛效率。然后在搜索阶段,Cheetah通过考虑速度、对其他车辆的影响和安全问题等因素,为自动驾驶车辆寻找最优的变道策略。设计基于树的自适应波束搜索算法,缩小搜索空间,提高搜索精度。在真实和合成数据上的广泛实验表明,所提出的框架在有效性和效率方面都优于最先进的竞争对手