基于VMD-LSTM组合模型时间序列预测python代码

本文详细介绍了使用VMD-LSTM模型进行时间序列预测的Python代码,包括预处理、VMD分解、模型训练和预测过程。代码注释全面,展示了RMSE、MAE等多指标评估结果,适用于各种序列预测任务。
摘要由CSDN通过智能技术生成

整理了基于VMD-LSTM组合模型时间序列预测python代码,该代码注释十分齐全,采用RMSE、MAE、MAPE和R2等多种评价指标,效果优异,适合想发文章的同学。

1)首先对原始数据进行预处理;

2)对处理完的数据进行VMD分解,分解为K个模态分量和1个残差分量;

3)将各个模态分量输入模型,建立模型进行预测;

4)将各个预测结果相加得到最终的结果。

|  测试集指标  |    MSE     |    RMSE    |    MAE     |    MAPE    |     R2     |

| 预测结果指标: | 1948.3765 | 44.140421608 | 30.95600934894 | 6.698983% | 74.14933% |

值得注意的是,该模型根据需要可以更改为:

 单输入单步预测,
 单输入多步预测,
 多输入单步预测,
 多输入多步预测,

代码获取链接:基于VMD-LSTM组合模型时间序列预测python代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值