整理了基于VMD-LSTM组合模型时间序列预测python代码,该代码注释十分齐全,采用RMSE、MAE、MAPE和R2等多种评价指标,效果优异,适合想发文章的同学。
1)首先对原始数据进行预处理;
2)对处理完的数据进行VMD分解,分解为K个模态分量和1个残差分量;
3)将各个模态分量输入模型,建立模型进行预测;
4)将各个预测结果相加得到最终的结果。
| 测试集指标 | MSE | RMSE | MAE | MAPE | R2 |
| 预测结果指标: | 1948.3765 | 44.140421608 | 30.95600934894 | 6.698983% | 74.14933% |
值得注意的是,该模型根据需要可以更改为:
单输入单步预测, 单输入多步预测, 多输入单步预测, 多输入多步预测,
代码获取链接:基于VMD-LSTM组合模型时间序列预测python代码