目前我们对Transformer模型的研究已经很全面了,关于它的复现成果也非常多,但都比较零散,不成系统,而且缺乏对Transformer改进变体的详细梳理,这对我们改模型写代码很不友好。传统源码,内容冗杂,不易理解,对于刚入手的同学来说较为困难。
基于此,笔者整理了Informer,Autoformer,Crossformer,Dlinear,iTransformer,Patchtst,TSMixer,TimesNet,Transformer,FEDformer,TiDE, Reformer等19种最新的时间序列预测模型python代码,集成在一个代码中。
传统源码结构复杂,不易理解,上述代码的数据加载处理,训练,测试等过程全部进行重构,重构后的代码简介易懂,数据替换,参数修改方便。示例为csv数据;支持单变量多变量输入;多步单步预测;多个模型一起优惠巨大。
值得注意的是,该代码参数较多,集成程度较好,适合对python有基础了解的朋友进行学习,或者改进以发文章使用。小白适合更为基础的代码。
代码获取链接:全网最全19种transformer及其变体时间序列预测模型python代码合集
transformer及其变体代码:
运行图:
包括模型:
对应环境: