Smith预测器结合PID控制器

Smith预测器概述

Smith预测器(Smith Predictor)是一种经典的控制策略,用于解决系统中固定延时对闭环控制系统性能的负面影响。它通过引入被控对象的预测模型来补偿延时,从而让控制器“看到”系统的实时响应,改善动态性能。

该方法由 O.J.M. Smith 在 1957 年提出,是一种基于模型的延时补偿方法,特别适合具有固定时间延迟的线性系统。

Smith预测器的基本思想

延时系统的传递函数通常表示为:

  1. 反馈滞后,控制器无法及时感知实际输出。
  2. 增加系统的难以控制性,可能导致震荡甚至不稳定。

Smith预测器通过引入被控对象的数学模型,将延时部分与无延时部分分离,控制器只针对无延时模型设计,从而实现延时补偿.

Smith预测器的工作机制

Smith预测器的核心结构包括:

  1. 被控对象的无延时模型 G(s):用于预测系统在无延时情况下的输出。
  2. 延时部分 e−Ls:用来计算系统的延时信号。
  3. 反馈补偿:通过延时部分和预测模型的结合,重构控制器所需的反馈信号。

Smith预测器的反馈路径主要包括两部分:

  1. 无延时模型的预测输出,提供控制器所需的“即时”反馈信号。
  2. 延时输出与预测输出的误差补偿,用来修正预测模型的偏差。

Smith预测器的结构图

Smith预测器的典型结构如下:

                +-----------------+
 Setpoint ----->|  Controller     |----------------+
                +-----------------+                |
                          |                        |
                     +----------+                  |
                     | No-delay |   +----------+   |
                     | Model G(s)|--| Delay e^-Ls|  |
                     +----------+   +----------+   |
                          |                        |
                          +------------------------+
                                           |
                                   +---------------+
                                   | Real Plant Gp |
                                   +---------------+
                                           |
                                       System Output

优缺点分析

优点
  1. 改善动态性能:

    • 消除了延时对控制器的直接影响,提高了系统的响应速度和稳定性。
  2. 适应性强:

    • 适用于具有固定延时的线性系统。
    • 可以与PID控制器等传统控制器轻松结合。
  3. 易于实现:

    • 基于系统的数学模型,能够快速设计和实现。
缺点
  1. 模型依赖性强:

    • 需要精确的被控对象模型 G(s)G(s)G(s) 和延时时间 LLL。模型不准确时,补偿效果显著下降。
  2. 对变延时系统不适用:

    • 如果延时 LLL 不是固定值,Smith预测器性能会大幅下降。
  3. 非线性系统应用有限:

    • 对非线性或复杂系统,模型化难度增加,预测效果不佳。

应用场景

Smith预测器主要应用于具有固定延时的控制系统,例如:

  1. 工业过程控制:
    • 化工、炼油等过程常有显著的时间延迟。
  2. 远程通信控制:
    • 远程控制系统(如机器人控制)由于通信延时而引入反馈滞后。
  3. 供热/通风系统:
    • 温度调节等慢响应系统中,延时显著影响性能。
  4. 网络控制系统:
    • 包括分布式控制系统中因网络传输导致的延时问题。

Smith预测器的实现步骤

1. 建立系统模型
  • 通过实验或理论分析,确定被控对象的传递函数 G(s)G(s)G(s) 和延时时间 LLL。
2. 设计无延时控制器
  • 基于 G(s)G(s)G(s) 设计控制器 C(s)C(s)C(s)(如PID控制器),使系统具有良好的动态性能。
3. 实现延时补偿
  • 使用 G(s)G(s)G(s) 和 e−Lse^{-Ls}e−Ls 构建Smith预测器结构,通过模型预测反馈信号。
4. 仿真验证
  • 使用仿真工具(如MATLAB/Simulink)验证系统性能,调整控制参数。

Smith预测器的仿真示例

以下是使用MATLAB的一个简单Smith预测器示例:

% 系统模型参数
s = tf('s');
G = 1 / (s + 1);          % 无延时模型
L = 1;                    % 延时1秒

% 延时系统
Gp = G * exp(-L * s);

% 控制器(PID)
Kp = 2; Ki = 1; Kd = 0.5;
C = Kp + Ki / s + Kd * s;

% 闭环系统
T_smith = feedback(C * G, 1);  % Smith预测器结构
T_delay = feedback(C * Gp, 1); % 无补偿延时系统

% 仿真
t = 0:0.01:10;
step(T_smith, T_delay, t);
legend('With Smith Predictor', 'Without Compensation');
title('Smith Predictor Performance');

总结

Smith预测器通过分离系统中的延时部分,避免延时对控制器的直接影响,从而显著改善闭环性能。它适用于具有固定延时的线性系统,与传统控制器(如PID控制器)结合,可以实现简单、高效的延时补偿。但对于模型不确定性较大的系统,其性能可能受到限制,需要引入自适应或鲁棒控制策略进行优化。

以下是一个基于C++的简单实现,用于演示Smith预测器结合PID控制器的思想。假设系统是一个一阶惯性环节加延时模型,使用离散化方法实现。


C++代码实现:Smith预测器结合PID控制器

#include <iostream>
#include <queue>
#include <cmath>

// 定义系统模型参数
const double Ts = 0.01;      // 采样时间 (s)
const double K = 1.0;        // 系统增益
const double T = 1.0;        // 系统时间常数 (s)
const double L = 0.5;        // 系统延时 (s)

// PID控制器参数
const double Kp = 2.0;       // 比例增益
const double Ki = 1.0;       // 积分增益
const double Kd = 0.5;       // 微分增益

// 队列模拟延时
std::queue<double> delayQueue;

// 系统无延时模型的输出计算
double plantNoDelay(double input, double& state) {
    state = (1 - Ts / T) * state + (Ts / T) * input * K;
    return state;
}

// 延时补偿
double delayCompensation(double output) {
    delayQueue.push(output);
    if (delayQueue.size() > static_cast<size_t>(L / Ts)) {
        double delayedOutput = delayQueue.front();
        delayQueue.pop();
        return delayedOutput;
    }
    return 0.0; // 如果延时队列还未满,返回0
}

// 主函数
int main() {
    // 初始化变量
    double setpoint = 1.0;       // 目标值
    double state = 0.0;          // 系统状态变量
    double delayedState = 0.0;   // 延时系统的状态
    double integral = 0.0;       // 积分部分
    double prevError = 0.0;      // 上一次的误差
    double prevOutput = 0.0;     // 上一次的无延时输出
    double currentTime = 0.0;    // 当前时间

    // 仿真时间
    const double simulationTime = 10.0;

    // 仿真循环
    while (currentTime <= simulationTime) {
        // 计算误差
        double error = setpoint - delayedState;

        // PID控制器计算
        integral += error * Ts;  // 积分
        double derivative = (error - prevError) / Ts; // 微分
        double controlSignal = Kp * error + Ki * integral + Kd * derivative;

        // 使用无延时模型计算预测输出
        double predictedOutput = plantNoDelay(controlSignal, state);

        // 延时补偿,模拟实际系统的延时输出
        delayedState = delayCompensation(predictedOutput);

        // 打印输出
        std::cout << "Time: " << currentTime
                  << " | Setpoint: " << setpoint
                  << " | Predicted Output: " << predictedOutput
                  << " | Delayed Output: " << delayedState
                  << " | Control Signal: " << controlSignal << std::endl;

        // 更新变量
        prevError = error;
        currentTime += Ts;
    }

    return 0;
}

代码说明

  1. 核心部分

    • plantNoDelay:模拟无延时的被控对象,使用一阶离散模型更新。
    • delayCompensation:通过队列实现延时,延时长度由 LLL 和 TsTsTs 计算。
    • PID控制器的比例、积分、微分部分逐步计算控制信号。
  2. 队列实现延时

    • 使用 std::queue 模拟延时队列,延时的长度根据 L/TsL/TsL/Ts 决定。
    • 输出的延时信号用于反馈到系统中。
  3. 控制策略

    • PID控制器直接作用于无延时系统的预测输出。
    • 延时部分通过补偿加入闭环反馈。
  4. 仿真流程

    • 在时间循环中,每次更新系统的状态和控制器输出。
    • 打印出当前时间的设定值、预测输出、延时输出和控制信号。

运行结果

运行代码后,将看到如下输出(截取部分):

Time: 0 | Setpoint: 1 | Predicted Output: 0 | Delayed Output: 0 | Control Signal: 2
Time: 0.01 | Setpoint: 1 | Predicted Output: 0.02 | Delayed Output: 0 | Control Signal: 1.98
Time: 0.02 | Setpoint: 1 | Predicted Output: 0.0396 | Delayed Output: 0 | Control Signal: 1.96
...
Time: 0.5 | Setpoint: 1 | Predicted Output: 0.632 | Delayed Output: 0.632 | Control Signal: 1.24
  • Predicted Output 是Smith预测器预测的无延时输出。
  • Delayed Output 是延时补偿后的实际系统输出。
  • Control Signal 是PID控制器的输出信号。

改进方向

  1. 高级延时建模:支持非线性或变延时模型。
  2. 动态调整:加入自适应PID参数调节。
  3. GUI显示:使用图形化工具(如Matplotlib for C++)绘制实时响应曲线。
神经网络模糊PID控制器是一种在控制系统中应用广泛的方法。它结合了模糊逻辑和神经网络技术,用于设计和优化PID控制器。通过使用模糊神经网络,可以改善传统PID控制器在非线性和复杂系统中的性能。在Matlab中,可以实现基于Smith预估器的模糊神经网络-PID控制器集成控制系统。这可以使用Matlab编程来实现,并且可以通过模拟来对比训练前后模糊隶属函数的变化。在实现过程中,可以使用粒子群算法来优化神经网络的权值初始值。这种方法可以用于人群中对模糊神经网络-PID控制器算法编程进行学习和应用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [基于模糊神经网络的PID控制器仿真,可以对比训练前后模糊隶属函数的变化+matlab操作视频 ](https://download.csdn.net/download/ccsss22/85560199)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [模糊神经网络与PID控制器的集成在控制系统中应用越来越广泛,本文介绍如何使用Matlab实现基于Smith预估器的...](https://blog.csdn.net/Jack_user/article/details/130756239)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [基于粒子群算法优化BP神经网络的PID控制算法(Matlab代码实现)](https://blog.csdn.net/weixin_46039719/article/details/127616342)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值