哥德巴赫猜想—初等数论课后习题

哥德巴赫猜想的初等证明

凡事应尽可能简单,但不能过于简单——A.爱因斯坦
我们的祖先在地球上生活了几百万年后才知道地球的存在;然而真相是简单的。数学家们把问题复杂化了(用连续的思想去解决离散的问题难度更大),用解析数论、代数数论、实分析和复分析不能解决这些问题时,用初等方法能解决吗?
受欧几里得用反证法简单而优美地证明素数无限性的启发,考虑 2 n = p + ( 2 n − p ) , 2n=p+(2n-p) , 2n=p+(2np)若设定 p p p n n n 前奇素数,那么只需证明 2 n − p 2n-p 2np 中一定有素数即可证明哥德巴赫猜想。
2 n 2 ⋅ 4 2 ⋅ 5 2 ⋅ 6 2 ⋅ 7 2 ⋅ 8 2 ⋅ 9 2 ⋅ 10 2 ⋅ 11 2 n p 3 3 3 , 5 3 , 5 3 , 5 , 7 3 , 5 , 7 3 , 5 , 7 3 , 5 , 7 3 , 5 , 7 , . . . p < n 2 n − p 5 7 9 , 7 11 , 9 13 , 11 , 9 15 , 13 , 11 17 , 15 , 13 19 , 17 , 15 2 n − p 中 必 有 素 数 \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline 2n&2\cdot 4 & 2\cdot 5& 2\cdot 6&2\cdot 7&2\cdot 8& 2\cdot 9&2\cdot 10&2\cdot11&2n \\ \hline p &3& 3&{\color{red}{} 3},5&3, {\color{red}{} 5}&3,5, {\color{red}{} 7}&{\color{red}{} 3},5,7&3,{\color{red}{} 5},7&3,5,{\color{red}{} 7}&3,5,7,...p<n\\ \hline2n-p&5&7&{\color{red}{} 9},7&11,{\color{red}{} 9}&13,11,{\color{red}{} 9}&{\color{red}{} 15},13,11&17,{\color{red}{} 15},13&19,17,{\color{red}{} 15}&2n-p中必有素数\\ \hline \end{array} 2np2np24352537263,59,7273,511,9283,5,713,11,9293,5,715,13,112103,5,717,15,132113,5,719,17,152n3,5,7,...p<n2np

定理1:设 p p p n n n 前奇素数的集合,则 2 n − p , 2 n + p 2n-p,2n+p 2np,2n+p 中皆有素数

引理:(中国剩余定理)设 m 1 , m 2 , m 3 , . . . m r m_{1},m_{2},m_{3},...m_{r} m1,m2,m3,...mr是两两互素的,则同余方程组
x ≡ a 1 ( m o d m 1 ) , x\equiv a_{1}(modm_{1}), xa1(modm1),
x ≡ a 2 ( m o d m 2 ) , x\equiv a_{2}(modm_{2}), xa2(modm2),
x ≡ a 3 ( m o d m 3 ) , x\equiv a_{3}(modm_{3}), xa3(modm3),
. . . . . . ...... ......
x ≡ a r ( m o d m r ) . x\equiv a_{r}(modm_{r}). xar(modmr).
有模 M = m 1 m 2 m 3 ⋅ ⋅ ⋅ m r M=m_{1}m_{2}m_{3} \cdot\cdot\cdot m_{r} M=m1m2m3mr 的唯一解.
这里不是要证明它,而是要引入两种特殊情况的解:
( 1 ) a i = m i (1)a_{i}=m_{i} (1)ai=mi 时,有唯一解 : x ≡ 0 ( m o d M ) , : x\equiv0(modM) , x0(modM)最小正解 x = M ; ( 非 0 ) x=M ;(非0) x=M(0)
( 2 ) a i = m k , i ≠ k (2)a_{i}=m_{k},i\ne k (2)ai=mk,i=k时,包括部分 a i = m i a_{i}=m_{i} ai=mi也有唯一解 : x ≡ b ( m o d M ) , 0 < b < M , : x\equiv b(modM),0<b<M , :xb(modM),0<b<M,最小正解 x = b + M . x=b+M . x=b+M.

下面回到命题的证明:
p p p n n n 前奇素数的集合, p = { 3 , 5 , 7 , . . . , p i } , p < n , i ≥ 1 p=\left\{ 3,5,7,...,p_{i} \right\},p<n,i\geq1 p={ 3,5,7,...,pi},p<n,i1
n = 4 n=4 n=4 时, p = 3 ; 2 n − p = 5 p=3; 2n-p=5 p=3;2np=5 是素数;
n = 5 n=5 n=5 时, p = 3 ; 2 n − p = 7 p=3; 2n-p=7 p=3;2np=7 是素数;
n = 6 n=6 n=6 时, p = { 3 , 5 } ; 2 n − p = { 9 , 7 } ; 7 p=\left\{ 3,5\right\}; 2n-p=\left\{ 9,7 \right\}; 7 p={ 3,5};2np={ 9,7};7 是素数;
n = 7 n=7 n=7 时, p = { 3 , 5 } ; 2 n − p = { 11 , 9 } ; 11 p=\left\{ 3,5\right\}; 2n-p=\left\{ 11,9 \right\}; 11 p={ 3,5};2np={ 11,9};11是素数;
n = 8 n=8 n=8 时, p = { 3 , 5 , 7 } ; 2 n − p = { 13 , 11 , 9 } ; 13 , 11 p=\left\{ 3,5,7 \right\}; 2n-p=\left\{ 13,11,9 \right\}; 13,11 p={ 3,5,7};2np={ 13,11,9};13,11是素数;
后面是不是都成立呢?下面用反证法来证明:
因为, n 2 > 1 n^{2}>1 n2>1是一个合数, n n n 的全部素因子皆不超过 n ; n; n; n < 2 n − p < n 2 , n<2n-p<n^{2}, n<2np<n2 所以,若 2 n − p 2n-p 2np 是一个合数,则 2 n − p 2n-p 2np 必有一个素因子小于 n n n, 即若 2 n − p 2n-p 2np 是合数,必能被某个 p p p 整除.设为 q , q ∈ p . q, q∈p. q,qp.

反证法:
p p p n n n 前奇素数的集合,假设 2 n − p = { 2 n − 3 , 2 n − 5 , ⋯   , 2 n − p i } 2n-p=\left\{ 2n-3,2n-5,\cdots,2n-p_{i} \right\} 2np={ 2n3,2n5,,2npi}全部是合数,必有 2 n − p ≡ 0 ( m o d q ) , q ∈ p , 2n-p\equiv0(modq),q\in p, 2np0(modq),qp, 2 n − p ≡ 0 ( m o d q ) 2n-p\equiv0(modq) 2np0(modq) 全部是合数,不外两种情况: p = q p=q p=q p ≠ q p\ne q p=q(包括部分 p = q p=q p=q )与引理的两种特殊情况对应(若有

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值