求和新方法

问题的提出:整系数多项式的前 n n n 项和如何求得

∑ x = 1 n f ( x ) = ? = ∫ 0 n g ( x ) d x \sum_{x=1}^{n}f(x)=?=\int_{0}^{n}g(x)dx x=1nf(x)=?=0ng(x)dx

∑ x = 1 n x = n ( n + 1 ) 2 = ∫ 0 n x + 1 2 d x \sum_{x=1}^{n}{x}=\frac{n(n+1)}{2}=\int_{0}^{n}x+\frac{1}{2}dx x=1nx=2n(n+1)=0nx+21dx

∑ x = 1 n x 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = ∫ 0 n x 2 + x + 1 6 d x \sum_{x=1}^{n}{x^{2}}=\frac{n(n+1)(2n+1)}{6}=\int_{0}^{n}x^{2} +x+\frac{1}{6}{}dx x=1nx2=6n(n+1)(2n+1)=0nx2+x+61dx

∑ x = 1 n x 3 = n 2 ( n + 1 ) 2 4 = ∫ 0 n x 3 + 3 x 2 2 + x 2 d x \sum_{x=1}^{n}{x^{3}}=\frac{n^{2}(n+1)^{2}}{4}=\int_{0}^{n}x^3+\frac{3x^2}{2}+\frac{x}{2}dx x=1nx3=4n2(n+1)2=0nx3+23x2+2xdx

∑ x = 1 n x 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n − 1 ) 30 = ∫ 0 n x 4 + 2 x 3 + x 2 − 1 30 d x \sum_{x=1}^{n}{x^{4}}=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} =\int_{0}^{n}x^4+2x^3+x^2-\frac{1}{30}dx x=1nx4=30n(n+1)(2n+1)(3n2+3n1)=0nx4+2x3+x2301dx

上面过程见我的文章:级数的部分和与伯努利数

如何求 ∑ x = 1 n x ( x + 5 ) = ∑ x = 1 n ( x 2 + 5 x ) = ? \sum_{x=1}^{n}{x(x+5)}=\sum_{x=1}^{n}{(x^2}+5x)=? x=1nx(x+5)=x=1n(x2+5x)=?

B 1 ( x ) = x + 1 / 2 \color{red}{ B_1(x)=x+1/2} B1(x)=x+1/2 代替展开后的 x \color{red}{ x} x
B 2 ( x ) = x 2 + x + 1 / 6 \color{red}{ B_2(x)=x^2+x+1/6} B2(x)=x2+x+1/6 代替展开后的 x 2 \color{red}{ x^2} x2,
B 3 ( x ) = x 3 + 3 x 2 / 2 + x / 2 \color{red}{ B_3(x)=x^3+3x^2/2+x/2} B3(x)=x3+3x2/2+x/2 代替展开后的 x 3 \color{red}{ x^3} x3,
B 4 ( x ) = x 4 + 2 x 3 + x 2 − 1 / 30 \color{red}{ B_4(x)=x^4+2x^3+x^2-1/30} B4(x)=x4+2x3+x21/30 代替展开后的 x 4 \color{red}{ x^4} x4,
⋯ ⋯ \cdots\cdots
即可

∑ x = 1 n ( x 2 + 5 x ) = ∫ 0 n ( x 2 + x + 1 / 6 ) + 5 ( x + 1 / 2 ) d x \sum_{x=1}^{n}{(x^2}+5x)=\int_{0}^{n}({\color{red}{x^2+x+1/6}})+5({\color{red}{ x+1/2}}) dx x=1n(x2+5x)=0n(x2+x+1/6)+5(x+1/2)dx

= ∫ 0 n ( x 2 + 6 x + 8 / 3 ) d x = n ( n + 1 ) ( n + 8 ) 3 =\int_{0}^{n}(x^2+6x+8/3)dx=\frac{n(n+1)(n+8)}{3} =0n(x2+6x+8/3)dx=3n(n+1)(n+8)

∑ x = 1 n x ( x + 5 ) = n ( n + 1 ) ( n + 8 ) 3 = ∫ 0 n ( x 2 + 6 x + 8 / 3 ) d x \boxed{\color{blue}{\sum_{x=1}^{n}x(x+5)=\frac{n(n+1)(n+8)}{3}}=\int_{0}^{n}(x^2+6x+8/3)dx} x=1nx(x+5)=3n(n+1)(n+8)=0n(x2+6x+8/3)dx
用同样方法可求得任何整系数多项式的前n项和

∑ x = 1 n f k ( x ) = ∫ 0 n f ( B k ( x ) ) d x \sum_{x=1}^{n}f_k(x)=\int_{0}^{n}{f(B_k(x))dx} x=1nfk(x)=0nf(Bk(x))dx

∑ x = 1 n x ( x + 1 ) = n ( n + 1 ) ( n + 2 ) 3 = ∫ 0 n ( x 2 + 2 x + 2 / 3 ) d x \boxed{\color{blue}{\sum_{x=1}^{n}x(x+1)=\frac{n(n+1)(n+2)}{3}}=\int_{0}^{n}(x^2+2x+2/3)dx} x=1nx(x+1)=3n(n+1)(n+2)=0n(x2+2x+2/3)dx

∑ x = 1 n ( 2 x − 1 ) = 1 + 3 + 5 + ⋯ + ( 2 n − 1 ) = n 2 = ∫ 0 n ( 2 x ) d x \boxed{\color{blue}{\sum_{x=1}^{n}(2x-1)=1+3+5+\cdots +(2n-1)=n^2=\int_{0}^{n}(2x)dx}} x=1n(2x1)=1+3+5++(2n1)=n2=0n(2x)dx

∑ x = 1 n x ( x + 2 ) = n ( n + 1 ) ( 2 n + 7 ) 6 = ∫ 0 n ( x 2 + 3 x + 7 / 6 ) d x \boxed{\color{blue}{\sum_{x=1}^{n}x(x+2)=\frac{n(n+1)(2n+7)}{6}}=\int_{0}^{n}(x^2+3x+7/6)dx} x=1nx(x+2)=6n(n+1)(2n+7)=0n(x2+3x+7/6)dx

∑ x = 1 n x ( x + 1 ) ( x + 2 ) = n ( n + 1 ) ( n + 2 ) ( n + 3 ) 4 = ∫ 0 n ( x 3 + 9 2 x 2 + 11 2 x + 3 2 ) d x \boxed{\color{blue}{\sum_{x=1}^{n}x(x+1)(x+2)=\frac{n(n+1)(n+2)(n+3)}{4}}=\int_{0}^{n}(x^3+\frac{9}{2}x^2+\frac{11}{2}x+\frac{3}{2})dx} x=1nx(x+1)(x+2)=4n(n+1)(n+2)(n+3)=0n(x3+29x2+211x+23)dx

∑ x = 1 n x ( x + 1 ) ⋯ ( x + k ) = n ( n + 1 ) ⋯ ( n + k + 1 ) k + 2 \boxed{\color{blue}{\sum_{x=1}^{n}x(x+1)\cdots (x+k)=\frac{n(n+1)\cdots(n+k+1)}{k+2}}} x=1nx(x+1)(x+k)=k+2n(n+1)(n+k+1)

∑ x = 1 n x ( x + 1 ) 2 = n ( n + 1 ) ( n + 2 ) ( 3 n + 5 ) 12 = ∫ 0 n ( x 3 + 21 6 x 2 + 21 6 x + 5 6 ) d x \boxed{\color{blue}{\sum_{x=1}^{n}x(x+1)^2=\frac{n(n+1)(n+2)(3n+5)}{12}}=\int_{0}^{n}(x^3+\frac{21}{6}x^2+\frac{21}{6}x+\frac{5}{6})dx} x=1nx(x+1)2=12n(n+1)(n+2)(3n+5)=0n(x3+621x2+621x+65)dx

∑ x = 1 n x ( x + 1 ) 2 = ∑ x = 1 n ( x 3 + 2 x 2 + x ) \sum_{x=1}^{n}x(x+1)^2=\sum_{x=1}^{n}(x^3+2x^2+x) x=1nx(x+1)2=x=1n(x3+2x2+x)

= ∫ 0 n ( x 3 + 3 x 2 / 2 + x / 2 ) + 2 ( x 2 + x + 1 / 6 ) + ( x + 1 / 2 ) d x =\int_{0}^{n}({\color{red}{x^3+3x^2/2+x/2}})+2({\color{red}{{x^2+x+1/6}}})+({\color{red}x+1/2})dx =0n(x3+3x2/2+x/2)+2(x2+x+1/6)+(x+1/2)dx

= ∫ 0 n ( x 3 + 21 6 x 2 + 21 6 x + 5 6 ) d x =\int_{0}^{n}(x^3+\frac{21}{6}x^2+\frac{21}{6}x+\frac{5}{6})dx =0n(x3+621x2+621x+65)dx

= n ( n + 1 ) ( n + 2 ) ( 3 n + 5 ) 12 =\frac{n(n+1)(n+2)(3n+5)}{12} =12n(n+1)(n+2)(3n+5)

就这么简单!
下篇讲

∑ x = 1 n 1 f k ( x ) = ? \sum_{x=1}^{n}\frac{1}{f_k(x)}=? x=1nfk(x)1=?

∑ x = 1 n 1 x ( x + 1 ) ( x + 5 ) ( x + 9 ) = ? = ∫ 0 n g ( x ) d x \sum_{x=1}^{n}\frac{1}{x(x+1)(x+5)(x+9)}=?=\int_{0}^{n}g^{}(x)dx x=1nx(x+1)(x+5)(x+9)1=?=0ng(x)dx

方法完全不同,这里不能用伯努利多项式。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值