级数的部分和与伯努利数

级数的部分和

∑ x = 1 n x = 1 + 2 + ⋯ + n = n ( n + 1 ) 2 = S n 1 \sum_{x=1}^{n}{x}=1+2+\cdots+n=\frac{n(n+1)}{2}=S_{n}^{1} x=1nx=1+2++n=2n(n+1)=Sn1

∑ x = 1 n x 2 = 1 2 + 2 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 = S n 2 \sum_{x=1}^{n}{x^{2}}=1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2n+1)}{6}=S_{n}^{2} x=1nx2=12+22++n2=6n(n+1)(2n+1)=Sn2

∑ x = 1 n x 3 = 1 3 + 2 3 + ⋯ + n 3 = n 2 ( n + 1 ) 2 4 = S n 3 \sum_{x=1}^{n}{x^{3}}=1^{3}+2^{3}+\cdots+n^{3}=\frac{n^2(n+1)^2}{4}=S_{n}^{3} x=1nx3=13+23++n3=4n2(n+1)2=Sn3

∑ x = 1 n x 4 = 1 4 + 2 4 + ⋯ + n 4 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 2 + 3 n − 1 ) 30 = S n 4 \sum_{x=1}^{n}{x^{4}}=1^{4}+2^{4}+\cdots+n^{4}=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}=S_{n}^{4} x=1nx4=14+24++n4=30n(n+1)(2n+1)(3n2+3n1)=Sn4

∑ x = 1 n x 5 = 1 5 + 2 5 + ⋯ + n 5 = n 2 ( n + 1 ) 2 ( 2 n 2 + 2 n − 1 ) 12 = S n 5 \sum_{x=1}^{n}{x^{5}}=1^{5}+2^{5}+\cdots+n^{5}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12}=S_{n}^{5} x=1nx5=15+25++n5=12n2(n+1)2(2n2+2n1)=Sn5

∑ x = 1 n x 6 = 1 6 + 2 6 + ⋯ + n 6 = n ( n + 1 ) ( 2 n + 1 ) ( 3 n 4 + 6 n 3 − 3 n + 1 ) 42 = S n 6 \sum_{x=1}^{n}{x^{6}}=1^{6}+2^{6}+\cdots+n^{6}=\frac{n(n+1)(2n+1)(3n^4+6n^3-3n+1)}{42}=S_{n}^{6} x=1nx6=16+26++n6=42n(n+1)(2n+1)(3n4+6n33n+1)=Sn6

∑ x = 1 n x 7 = 1 7 + 2 7 + ⋯ + n 7 = n 2 ( n + 1 ) 2 ( 3 n 4 + 6 n 3 − n 2 − 4 n + 2 ) 24 = S n 7 \sum_{x=1}^{n}{x^{7}}=1^{7}+2^{7}+\cdots+n^{7}=\frac{n^2(n+1)^2(3n^4+6n^3-n^2-4n+2)}{24}=S_{n}^{7} x=1nx7=17+27++n7=24n2(n+1)2(3n4+6n3n24n+2)=Sn7

伯努利数

雅各布 ⋅ \cdot 伯努利 ( 1645 − 1705 ) (1645-1705) (16451705) 在为自然数的幂和 (乘方和)

S n p : = 1 p + 2 p + ⋯ + n p S_{n}^{p}:=1^{p}+2^{p}+\cdots+n^{p} Snp:=1p+2p++np

求经验公式时遇到了这些数,对 n = 1 , 2 , ⋯ n=1,2,\cdots n=1,2, 和指数 p = 1 , 2 , ⋯   , p=1,2,\cdots , p=1,2,,他得到了一般公式

S n p = 1 p + 1 n p + 1 + 1 2 n p + B 2 2 ( 1 p ) n p − 1 + B 3 3 ( 2 p ) n p − 2 + ⋯ + B p p ( p − 1    p ) n S_{n}^{p}=\frac{1}{p+1}n^{p+1}+\frac{1}{2}n^p+\frac{B_{2}}{2}\left( _{1}^{p}\right)n^{p-1}+\frac{B_{3}}{3}\left( _{2}^{p}\right)n^{p-2}+\cdots+\frac{B_{p}}{p}\left( _{p-1}^{\,\,p}\right)n Snp=p+11np+1+21np+2B2(1p)np1+3B3(2p)np2++pBp(p1p)n

他也注意到系数之和总等于 1 1 1 ,即

1 p + 1 + 1 2 + B 2 2 ( 1 p ) + B 3 3 ( 2 p ) + ⋯ + B p p ( p − 1    p ) = 1 \frac{1}{p+1}+\frac{1}{2}+\frac{B_{2}}{2}\left( _{1}^{p}\right)+\frac{B_{3}}{3}\left( _{2}^{p}\right)+\cdots+\frac{B_{p}}{p}\left( _{p-1}^{\,\,p}\right)=1 p+11+21+2B2(1p)+3B3(2p)++pBp(p1p)=1

由此,对 p = 2 , 3 , ⋯   , p=2,3,\cdots, p=2,3,, 我们得到一系列的伯努利数 B 2 , B 3 , ⋯   , B_{2},B_{3},\cdots, B2,B3,, 另外,我们令 B 0 = 1 , B 1 = − 1 / 2 , B_{0}=1,B_{1}=-1/2, B0=1,B1=1/2,对奇数 n ≥ 3 , n\geq3, n3, B n = 0. B_{n}=0. Bn=0. 其递归公式可以写成

∑ k = 0 n (     k p + 1 ) B k = 0 ( 事 实 上 B 1 = 1 2 , 这 里 是 − 1 2 ) \sum_{k=0}^{n}{\left( _{\,\,\,k}^{p+1} \right)}B_{k}=0(事实上B_{1}=\frac{1}{2},这里是-\frac{1}{2}) k=0n(kp+1)Bk=0(B1=21,21)

如果对方程的左边进行乘法运算,用 B n 代 替 B n , B_{n} 代替 B^{n}, BnBn, 就有

( 1 + B ) p + 1 − B p + 1 = 0 (1+B)^{p+1}-B_{p+1}=0 (1+B)p+1Bp+1=0

k k k B k B_{k} Bk k k k B k B_{k} Bk
0 0 0 1 1 1 1 1 1 − 1 / 2 -{1}/{2} 1/2
2 2 2 1 / 6 1/6 1/6 4 4 4 − 1 / 30 -1/30 1/30
6 6 6 1 / 42 1/42 1/42 8 8 8 − 1 / 30 -1/30 1/30
10 10 10 5 / 66 5/66 5/66 12 12 12 − 691 / 2730 -691/2730 691/2730
14 14 14 7 / 6 7/6 7/6 16 16 16 − 3617 / 510 -3617/510 3617/510
18 18 18 43867 / 798 43867/798 43867/798 20 20 20 − 174611 / 330 -174611/330 174611/330

B 3 = B 5 = B 7 = ⋯ = 0 , B 1 = − 1 2 ( 为 了 其 它 的 递 推 公 式 ) B_{3}=B_{5}=B_{7}=\cdots=0 , B_{1}=-\frac{1}{2}(为了其它的递推公式) B3=B5=B7==0B1=

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值