基于 Spring AI、DeepSeek、通义千问(Qwen)、豆包(DouBao)、RAG、Agent 等技术构建知识问答系统的完整实现方案,包含代码示例和详细注释

以下是基于 Spring AI、DeepSeek、通义千问(Qwen)、豆包(DouBao)、RAG、Agent 等技术构建知识问答系统的完整实现方案,包含代码示例和详细注释:


1. 系统架构与技术栈

模块技术/工具作用
后端框架Spring Boot + Spring AI构建REST API和AI模型集成
大模型调用Qwen API、DeepSeek API、DouBao API提供生成式问答能力
RAG模型LangChain + Elasticsearch检索+生成混合模型
Agent协调器LangChain Agent协调多模型任务流和异常处理
知识库Elasticsearch存储和检索内部文档
反馈与训练MySQL + 自动重训练脚本存储用户反馈并触发模型更新
前端框架Vue.js + WebSocket用户交互界面

2. 完整代码实现


(1) Maven依赖配置(pom.xml
<!-- Spring Boot核心依赖 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-web</artifactId>
</dependency>

<!-- Spring AI支持 -->
<dependency>
    <groupId>org.springframework.experimental</groupId>
    <artifactId>spring-ai</artifactId>
    <version>0.0.7</version>
</dependency>

<!-- LangChain Java客户端 -->
<dependency>
    <groupId>ai.langchain</groupId>
    <artifactId>langchain</artifactId>
    <version>0.0.222</version>
</dependency>

<!-- Elasticsearch客户端 -->
<dependency>
    <groupId>co.elastic.clients</groupId>
    <artifactId>elasticsearch-java</artifactId>
    <version>8.10.4</version>
</dependency>

<!-- MySQL数据库 -->
<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

(2) 配置大模型API(application.yml
# 大模型API密钥配置
qwen:
  api-key: YOUR_QWEN_API_KEY
deepseek:
  api-key: YOUR_DEEPEEK_API_KEY
doubao:
  api-key: YOUR_DOUBAO_API_KEY

(3) RAG模型配置(LangChain + Elasticsearch)
@Configuration
public class RAGConfig {
    @Bean
    public ElasticsearchClient elasticsearchClient() {
        return ElasticsearchClient.builder()
            .endpoint("http://localhost:9200")
            .build();
    }

    @Bean
    public RAGChain ragChain(ElasticsearchClient client) {
        // 初始化检索器(Elasticsearch)
        ElasticsearchRetriever retriever = new ElasticsearchRetriever(
            client, "internal_docs", "content"
        );

        // 初始化生成器(多模型选择)
        List<LLM> models = Arrays.asList(
            new QwenLLM("qwen-1.5", System.getenv("QWEN_API_KEY")),
            new DeepSeekLLM("deepseek-1.5", System.getenv("DEEPEEK_API_KEY"))
        );

        // 构建RAG链
        return new RAGChain(
            retriever,
            new MultiModelSelector(models),
            new QwenGenerator() // 默认生成器
        );
    }
}

(4) Agent智能体协调(多模型任务分配)
@Service
public class AgentService {
    private final RAGChain ragChain;
    private final RestTemplate restTemplate;

    public AgentService(RAGChain ragChain, RestTemplate restTemplate) {
        this.ragChain = ragChain;
        this.restTemplate = restTemplate;
    }

    // Agent处理用户问题
    public String handleQuestion(String query) {
        // 1. 判断问题类型
        if (isSystemQuery(query)) {
            // 调用Spring Boot系统API
            return restTemplate.getForObject("/api/system/data", String.class);
        } else {
            // 调用RAG模型生成答案
            return ragChain.query(query).getContent();
        }
    }

    private boolean isSystemQuery(String query) {
        return query.contains("订单状态") || query.contains("实时数据");
    }
}

(5) Spring Boot Controller
@RestController
@RequestMapping("/api")
public class AskController {
    private final AgentService agentService;

    public AskController(AgentService agentService) {
        this.agentService = agentService;
    }

    @PostMapping("/ask")
    public ResponseEntity<String> ask(@RequestBody QuestionRequest request) {
        String answer = agentService.handleQuestion(request.getQuery());
        return ResponseEntity.ok(answer);
    }

    // 用户反馈接口
    @PostMapping("/feedback")
    public ResponseEntity<Void> submitFeedback(@RequestBody Feedback feedback) {
        feedbackService.save(feedback);
        return ResponseEntity.ok().build();
    }
}

(6) 自动反馈与模型更新(定时任务)
@Component
public class AutoUpdater {
    @Scheduled(fixedRate = 86400000) // 每天执行一次
    public void updateModels() {
        List<Feedback> negativeFeedbacks = feedbackRepository.findByRatingLessThan(3);
        if (!negativeFeedbacks.isEmpty()) {
            // 1. 收集反馈数据
            List<String> newQueries = negativeFeedbacks.stream()
                .map(Feedback::getQuery)
                .collect(Collectors.toList());

            // 2. 重新训练RAG模型(示例:调用脚本)
            Process process = new ProcessBuilder("python", "retrain_rag.py", "--queries", String.join(",", newQueries))
                .start();

            // 3. 更新知识库索引
            documentService.reindex();
        }
    }
}

(7) Vue前端交互示例
<template>
  <div>
    <input v-model="query" placeholder="输入问题..." />
    <button @click="askQuestion">提问</button>
    <div v-for="answer in answers">
      {{ answer.text }}
      <button @click="submitFeedback(answer)">不满意</button>
    </div>
  </div>
</template>

<script>
export default {
  data() {
    return {
      query: "",
      answers: []
    };
  },
  methods: {
    async askQuestion() {
      const res = await fetch("/api/ask", {
        method: "POST",
        headers: { "Content-Type": "application/json" },
        body: JSON.stringify({ query: this.query })
      });
      this.answers.push(await res.json());
    },
    submitFeedback(answer) {
      fetch("/api/feedback", {
        method: "POST",
        body: JSON.stringify({
          query: answer.query,
          rating: 1 // 用户评分
        })
      });
    }
  }
};
</script>

3. 关键代码注释说明

(1) 多模型选择与RAG链
// 支持多模型动态选择
class MultiModelSelector implements LLM {
    private final List<LLM> models;

    public MultiModelSelector(List<LLM> models) {
        this.models = models;
    }

    public CompletionResponse generate(String prompt) {
        // 根据策略选择模型(如按权重或上下文)
        LLM selectedModel = models.get(0); // 简单示例
        return selectedModel.generate(prompt);
    }
}
(2) Agent任务分解逻辑
// 判断是否调用系统API
private boolean isSystemQuery(String query) {
    return query.contains("订单状态") || query.contains("实时数据");
}
(3) 自动重训练流程
// 定时任务触发模型更新
@Scheduled(fixedRate = 86400000)
public void updateModels() {
    // 收集低评分反馈并重新训练
}

4. 最终代码总结表

模块代码文件核心功能
RAG配置RAGConfig.java集成Elasticsearch和多模型生成器
Agent协调AgentService.java任务分解与多模型调用
反馈闭环AutoUpdater.java定时重训练和知识库更新
Spring Boot APIAskController.java提供问答接口和反馈收集
前端交互Ask.vue用户输入与实时反馈
数据库模型Feedback.java存储用户反馈和评分

5. 实现步骤总结

  1. 环境搭建:配置Spring Boot + Spring AI,集成Elasticsearch和MySQL。
  2. 知识库构建:将内部文档索引到Elasticsearch。
  3. 模型集成:通过LangChain调用Qwen、DeepSeek等模型API。
  4. Agent逻辑:编写任务分解逻辑,协调系统API与模型调用。
  5. 闭环反馈:收集用户反馈,触发模型重训练和知识库更新。
  6. 部署与监控:通过Prometheus/Grafana监控系统性能。

通过以上方案,可构建一个 高效、可扩展、自学习 的知识问答系统,支持多模型协同和实时反馈优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱的叹息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值