毫米波雷达障碍物检测算法介绍

本文介绍了毫米波雷达的工作原理,包括FFT和FMCW在数据处理中的应用,2D FFT用于提取速度信息,以及针对杂波噪声的CFAR算法。此外,还讨论了聚类方法在目标跟踪中的重要性,以及卡尔曼滤波器在车辆状态跟踪中的作用。
摘要由CSDN通过智能技术生成

Radar系列文章

传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里首先介绍毫米波雷达的相关内容,包括毫米波雷达基本介绍,毫米波雷达数据处理方法(测距测速测角原理,2D FFT,CFAR,聚类,毫米波雷达障碍物识别实例)等。

系列文章目录

1. 毫米波雷达基本介绍
2. FMCW毫米波雷达原理
3. 毫米波雷达障碍物检测算法介绍


上一章我们讲到可以通过混频器(Mixer)的中频信号(beat frequency)解算出速度和距离信息。
Mixer
混频器出来的差频信号,首先需要进行ADC模数转换,转换成数字信号,再给到DSP处理。首先进行的是FFT频谱分析,将时域信号转换为频域信号,再提取有效信息,下面将介绍这一过程。
FT

FFT and FMCW

在这里插入图片描述
混频器回波后的差频信号,首先截取中间段的有效信号进行FFT频谱分析,每段采样N次,每次采样得到一个距离单元,从而得到一下Range FFT map图,获得N*(Number of chirps)单元。
Range FFT

Range FFT

在这里插入图片描述

Output of Range FFT in MATLAB. X-axis = Beat Frequency, Y-axis = Signal power in dBm

以下是MATLAB进行FFT分析的程序示例。

Fs = 1000;            % Sampling frequency                    
T = 1/Fs;             % Sampling period       
L = 1500;             % Length of signal
t = (0:L-1)*T;        % Time vector
% TODO: Form a signal containing a 77 Hz sinusoid of amplitude 0.7 and a 43Hz sinusoid of amplitude 2.
S = 0.7*sin(2*pi*77*t)+2*sin(2*pi*43*t);
% Corrupt the signal with noise 
X = S + 2*randn(size(t));
% Plot the noisy signal in the time domain. It is difficult to identify the frequency components by looking at the signal X(t). 
plot(1000*t(1:50) ,X(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('t (milliseconds)')
ylabel('X(t)')
% TODO : Compute the Fourier transform of the signal. 
signal_fft = fft(X);
% TODO : Compute the two-sided spectrum P2. Then compute the single-sided spectrum P1 based on P2 and the even-valued signal length L.
P2 = abs(signal_fft/L);
P1=P2(1:L/2+1);
% Plotting
f = Fs*(0:(L/2))/L;
plot(f,P1) 
title('Single-Sided Amplitude Spectrum of X(t)')
xlabel('f (Hz)')
ylabel('|P1(f)|')

2D FFT

我们已经从Range FFT中获得了距离信息,下一步我们需要提取速度信息。这里我们需要对Range FFT信号再次进行FFT,获得获取多普勒频移 f d f_d fd,即可获得速度信息。多普勒频移是通过分析多个扫频波(chirps)的相位变化来获得的,因此需要在连续扫频波发射接收后,对距离多普勒进行2nd FFT,即2D FFT可获得频移/速度信息。
2D FFT
下图是真实场景中

本文以车载防撞雷达为研究背景,针对毫米波雷达目标检测和参数估计算法中的一些关键技术展开研究,并设计了一种低复杂度的毫米波车载雷达信号处理模块,应用于24GHz汽车前防撞雷达系统。首先,阐述了毫米波雷达的研究背景及意义,介绍国内外研究现状,主要包括产品级研究进展和毫米波雷达关键技术研究进展,对不同体制连续波雷达测距测速原理进行了详细推导,为后续研究和仿真提供了理论基础。其次,研究了毫米波线性调频连续波(Linear Frequency Modulated Continuous Wave,LFMCW)雷达中的多目标配对和速度解模糊算法。首先,针对现有变周期三角波LFMCW雷达利用容差函数进行多目标配对方法在目标数较多时算法复杂度较高的缺点,提出一种利用先验信息压缩频率配对空间的多步配对算法,降低配对复杂度。然后,针对现有锯齿波LFMCW雷达多重脉冲重复频率(Pulse Recurrence Frequency,PRF)解速度模糊算法复杂度高、鲁棒性差等缺点,提出一种改进算法,该算法根据模糊速度计算可能的速度值,得到对应的慢时间维离散傅里叶变换(Discrete Fourier Transform,DFT)因子及其频谱幅度值,最大频谱幅度值对应的速度值即为不模糊速度,极大降低了解模糊算法复杂度。然后,研究了恒虚警概率(Constant False Alarm Rate,CFAR)检测算法。在分析恒虚警概率检测目标遮蔽和自遮蔽效应形成原因的基础上,提出了一种能够自适应改变噪声电平估计样本的改进CFAR算法,该算法在CFAR检测过程中加入一个反馈操作,当某一频谱单元存在目标时,用估计得到的噪声功率电平代替该频谱单元值,减小对后续频谱单元噪声功率电平估计的影响,从而减小目标遮蔽与自遮蔽效应。针对二维CFAR算法,根据雷达速度计算不同距离单元的静止杂波所处的速度单元,将二维平面划分为噪声区与杂波区,对不同区域采用不同的CFAR准则进行检测,在保证虚警概率的前提下提高目标检测概率。最后,针对变周期三角波车载防撞雷达帧结构层次不清,实用性差的问题,提出一种多层次、低复杂度的帧结构及其设计方法,以采样间隔为最小时间单位更有利于系统同步,采用固定长度的子时隙和时隙时间使帧结构更加简单,降低硬件实现成本。利用现有系统硬件结构进行虚拟阵列的设计,通过调整发射天线间距并采用时间分集方式形成具有更大孔径的虚拟接收阵列,获得更高的波束成形增益。在此基础上,设计一种低复杂度的信号处理模块,该模块由信号预处理、波束成形、CFAR检测和多目标配对等子模块组成,并在ADSP-BF707平台上进行实现,应用于24GHz汽车前防撞雷达系统。实测结果显示,该模块算法能够实现目标检测与参数估计功能。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值