Lidar系列文章
传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里首先介绍激光雷达的相关内容,包括激光雷达基本介绍(本节内容),激光点云数据处理方法(点云数据显示,点云分割,点云聚类,障碍物识别实例)等。
系列文章目录
1. 激光雷达基本介绍
2. 激光点云数据显示
3. 基于RANSAC的激光点云分割
4. 点云分割入门级实例学习
5. 激光点云目标物聚类
6. 基于PCL实现欧式聚类提取
7. 激光雷达障碍物识别
文章目录
基于PCL实现欧式聚类提取
本节我们将介绍如何用PCL EuclideanClusterExtraction类采用欧氏聚类对三维点云组成的场景进行分割。
原始点云如下:
#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>
int
main (int argc, char** argv)
{
// Read in the cloud data 读入点云数据
pcl::PCDReader reader;
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
reader.read ("../table_scene_lms400.pcd", *cloud);
std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points."