基于PCL实现欧式聚类提取

本文是Lidar系列文章的一部分,讲解如何基于PCL库的EuclideanClusterExtraction类,对三维点云数据进行欧式聚类提取,以实现点云的分割。通过该方法,可以有效地将原始点云分割成不同的区域,为障碍物识别提供基础。
摘要由CSDN通过智能技术生成

Lidar系列文章

传感器融合是将多个传感器采集的数据进行融合处理,以更好感知周围环境;这里首先介绍激光雷达的相关内容,包括激光雷达基本介绍(本节内容),激光点云数据处理方法(点云数据显示,点云分割,点云聚类,障碍物识别实例)等。

系列文章目录

1. 激光雷达基本介绍
2. 激光点云数据显示
3. 基于RANSAC的激光点云分割
4. 点云分割入门级实例学习
5. 激光点云目标物聚类
6. 基于PCL实现欧式聚类提取
7. 激光雷达障碍物识别


基于PCL实现欧式聚类提取

本节我们将介绍如何用PCL EuclideanClusterExtraction类采用欧氏聚类对三维点云组成的场景进行分割。
原始点云如下:
在这里插入图片描述

#include <pcl/ModelCoefficients.h>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/features/normal_3d.h>
#include <pcl/kdtree/kdtree.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_clusters.h>


int 
main (int argc, char** argv)
{
   
  // Read in the cloud data 读入点云数据
  pcl::PCDReader reader;
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
  reader.read ("../table_scene_lms400.pcd", *cloud);
  std::cout << "PointCloud before filtering has: " << cloud->points.size () << " data points." 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值