使用多视角图卷积网络预测不规则区域的全市人群流量

1、文章信息

《Predicting Citywide Crowd Flows in Irregular Regions Using Multi-View Graph Convolutional Networks》。这是京东张钧波,郑宇老师等发在国际顶级期刊IEEE Transaction on Knowledge and Data Engineering (TKDE)上的一篇文章。

2、摘要

对于交通控制,风险评估和公共安全而言,能够预测城市每个部分的人群流量,特别是在不规则地区,具有战略重要性。然而,由于不同区域之间的相互作用和空间相关性,这是非常具有挑战性的。此外,它还受到许多因素的影响:i)不同时间间隔之间的多个时间相关性:邻近性,周期性,趋势性;ii)复杂的外部影响因素:天气,事件;iii)元特征:一天中的时间,一周中的一天等。在本文中,作者将不规则区域中的人群流量预测建模为时空图(STG)预测问题,其中每个节点代表一个时变流量区域。通过扩展图卷积来处理空间信息,我们建议使用空间图卷积来构建用于人群流量预测问题的多视角图卷积网络(MVGCN),其中不同的视图可以捕获如上所述的不同因素。文中使用了四个现实世界的数据集(出租车和自行车)评估了MVGCN。实验结果表明,该方法优于其他最新的技术方法。

3、问题定义

(1)不规则区域划分

城市地区通过道路网络自然分为不同的不规则区域。这些地区可能具有不同的功能,例如教育和商务功能。不同的功能区域通常具有不同的交通流模式。因此在这些不规则区域上进行交通流量预测的任务实际上更加合理。本文中首先运用了根据交通道路网络将城市区域切分,再对一些划分过细的区域进行聚合,即保证了划分的合理性又防止在过小的区域上失去预测的实际意义。具体的划分和聚类操作可以参考两篇文献资料:

G. Karypis and V. Kumar, “Parallel multilevel series k-way partitioning scheme for irregular graphs,” SIAM Review, vol. 41, no. 2, pp. 278–300, 1999.

N. J. Yuan, Y. Zheng, and X. Xie, “Segmentation of urban areas using road networks,” MSR-TR-2012–65, Technical Report, 2012.

文中以北京的道路交通网络划分区域示意图如图所示:

(2)基于时空图的预测

为了捕获不同不规则区域之间交通流的空间依赖性,我们使用历史的区域级的交互流构造了一个拓扑图。直觉是地理空间中的相邻区域通常紧密相关,此外,由于地铁,出租车等便利的交通,相距较远的区域也可能相互影响。交互流可以反映近距离或远距离区域之间的交通互动。具体来说,我们从流量数据中选择一个时间段,例如一两个月。然后,我们可以统计成对区域之间的有效时间片。有效时间片是指当考虑轨迹数据的噪声时区域间交互流大于阈值α的时间片。当区域交互流的有效时间片的比率大于阈值β时,就将二元无向边连接起来构建图。这篇论文中,阈值α设置为3,设置β为0.1。

给定时空图g=(V, E, A)和网络节点上的信号矩阵序列[Xt | t=1,2,..,T],我们的目的是建立一个模型预测下一个时间步的交通信息 Xt+1。

4、模型

下图概述了论文提出的深度学习框架,以预测STG中的人群流量。模型采用多视角图的框架,这是一种从跨域数据中学习潜在表示的有效机制。提出的框架包括两个阶段:数据准备和模型学习/预测。第一阶段用于获取全局信息并选择关键的时间步长,然后将所有这些时间步长输入第二阶段以进行模型训练。

数据准备阶段:“预测一个地区的人群流量时应考虑哪些因素?” a)天气,b)一天中的时间,c)时段等。不同的人可能有不同的答案,突出显示了对此问题的不同看法。论文中将这些视角分为两类:全局视角和时间视角。(1)全局视角由外部视角和元视角组成。根据预测目标的时间,我们获取不同的外部数据,例如先前时间步长和天气预报中的气象数据。我们还可以构造元功能:一天中的时间,一周中的一天等。(2)时间视角根据临近性,周期性,趋势性包含多个视图。考虑到两种类型的时间段(每天和每周)和两种类型的趋势(每月和每季度),我们选择相应的最近,每天,每周,每月和每季度的时间步,作为关键时间步以构建五个视角。对于每个不同的时间视角,我们获取关键时间步的流矩阵列表并将其连接起来,以构造出五个输入,如下所示:

模型学习/预测阶段:我们使用图卷积网络(GCN)和全连接神经网(FNN)分别对时间和全局视角进行建模。对于每个时间视角,GCN用于使用STG的结构信息来学习时变的空间相关性和相互作用。五个GCN的相应输出表示为O1,O2,O3,O4,O5。使用两个FNN分别捕获来自外部数据和元数据的影响。然后将所有这些输出送入多视角融合模块,然后输入post-net(例如FNN),以获得最终预测。多视角融合可以根据其特征有效地采用不同视角的输出。

接下来,对每一个具体部分进行详解:

(1)空间图卷积网络

为了同时考虑交互流和空间距离的影响,给定一个邻接矩阵A,论文中基于空间距离分配了一个空间权重矩阵,表示为:

将权重矩阵与原邻接矩阵进行逐位相乘,得到一个修正邻接矩阵S,其中空间权重矩阵的权重计算方式如下:

其中代表空间的距离,θ是一个恒定的控制尺度的参数。

对于修改后的矩阵S,考虑具有以下逐层传播规则的多个图卷积层:

这是Kipf简化版图卷积基本公式,其中Q代表了S的度矩阵。

为了捕获M-hop空间相关性和相互作用,我们在图卷积的启发下堆叠了M个空间图卷积层。当M大时,则得到一个非常深的网络。在这里,为了使得图卷积能更好地同时学习浅层和深层特征,论文中提出了一个基于GCN的残差单元,它将图卷积层集成到残差框架中。公式上,残差操作定义为:

(2)多视角融合

论文中采用了一种多视角融合方法,以将多个不同的时间视角的潜在表示与两个全局视角(外部和元数据)融合在一起。这里采用了基于参数矩阵的融合方法来融合五个GCN的输出以用于时间视图,如下所示:

其中W1,W2,W3,W4,W5分别为近邻时间,每日,每周,每月,每季度时间视角的分配可学习权重矩阵。

对于外部因素(例如天气和假日)和元数据(例如一天中的时间),我们分别将它们馈送到不同的全连接层中以获得不同的潜在表示形式。然后,再连接embed模块的所有输出,然后通过reshape添加全连接层,从而获得。不同的因素可能以不同的方式改变流量。例如,假期可能会增加人流,而暴雨可能会急剧减少人流。具体地说,后者就像一个开关,变化的流量在发生时会发生巨大的变化。基于这些认识,论文中利用两种不同的融合方法来处理这两种类型的情况。对于渐进式变化,采用总和融合法:,对于瞬时变化,采用门控机制:。其中σ为门控激活函数sigmoid。当的级联表示捕获到某些特殊的外部信息(例如暴雨天气)时,由于sigmoid函数的特性,与相比,会突然增加并变得更大。并且在大多数情况下,该项应接近零而不会发生突然变化。基于上述两种融合方法,最终输出计算为:

(3)损失函数

论文里采用的损失函数是Huber损失,它是平方误差损失和绝对误差损失之间的一种完美折衷,并已被证明是用于回归的稳健损失函数:

5、实验结果

论文中使用了四个数据集,分别是TaxiNYC,TaxiBJ,BikeDC和BikeNYC。对于一个时间片切分为一小时,评价指标为RMSE和MAE。通过对比实验可以得知MVGCN性能优于大多数的经典模型。同时论文中还针对不同视角时间片数量参数确定,GCN层数确定,以及组成成分效果进行了丰富的实验验证,可以作为相近主题论文的实验的标杆去学习。

6、创新点

在大家读这篇论文之前,强烈建议先看看张钧波老师在AAAI 2017 发表的一篇文章:Zhang, Junbo, Yu Zheng, and Dekang Qi. "Deep spatio-temporal residual networks for citywide crowd flows prediction." Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press, 2017. 这篇AAAI 2017的文章首次提出了融合不同时间视角的经典模型ST-ResNet, 是TKDE这篇论文的基础工作。本文中的创新点在于在ST-ResNet的基础上进行了改进,并指出了城市区域像素级划分的不足,并用图结构去建模,使得模型具备更好的可解释性,能与更多的真实世界指标结合起来。相比于AAAI 2017的工作,这篇文章又在融合技巧上有做了一些改进,引入了门控机制,使得突发事件动态能够被更好地捕捉。

Attention

如果你和我一样是轨道交通、道路交通、城市规划相关领域的,可以加微信:Dr_JinleiZhang,备注“进群”,加入交通大数据交流群!希望我们共同进步!

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

当交通遇上机器学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值