Causal Conditional Hidden Markov Model for Multimodal Traffic Prediction

Causal Conditional Hidden Markov Model for Multimodal Traffic Prediction

多模式交通预测的因果条件隐马尔可夫模型

摘要

多式联运交通流可以反映交通系统的健康状况,多式联运交通流预测对城市交通管理具有重要意义。最近的研究过分强调交通流量的时空相关性,忽略了导致观测结果产生的物理概念及其因果关系。在不同条件的影响下,时空相关性被认为是不稳定的,在观测中可能存在伪相关。本文从观测生成原理的角度分析了影响多模式交通流生成的物理概念,提出了一种用于多模式交通流预测的因果条件隐马尔可夫模型(CCHMM)。在潜变量推理阶段,后验网络从条件信息和观察中分离出感兴趣概念的因果表示,因果传播模块挖掘它们的因果关系。在数据生成阶段,先验网络从先验分布中抽取因果潜变量,并将其输入生成器生成多模式交通流。我们使用了一种相互监督的先验和后验训练方法来增强模型的可识别性。在真实数据集上的实验表明,CCHMM可以有效地解开感兴趣和识别概念的因果表示

介绍

城市交通系统通常是多式联运的,由几个相互连接的子系统组成,代表不同的交通方式,如自行车、出租车、公共汽车和汽车。他们的目标是满足多样化的出行需求,为居民提供多种出行选择(Liang, Huang, and Zhao 2021)。多式联运交通流可以反映交通系统的健康状况。城市交通管理者可以根据不同环境下的交通流量制定相应的管理策略,提高城市运行的平稳性。因此,多模式交通流预测是城市交通管理的重要组成部分,为交通引导提供了重要的数据支持(Liang, Huang, and Zhao 2021)。

大多数方法只能预测一定的交通流量(例如,出租车需求或速度)(Bai et al 2020;Li et al . 2021b;郭等2021;Wu et al . 2020;Ye等2021;Han et al . 2021)。它们只是对交通系统的部分观察,并不能真实反映现实场景中的真实情况。相比之下,现有的多模式交通预测方法往往将不同的交通流作为输入数据的通道扩展(Wang et al 2021;Li et al . 2021a;Zhou等2021;Liang et al . 2021),或者在模型中集成不同流的特征表示(Ye et al . 2019;邓等人2021)。他们含蓄地提取了所谓的时空相关性,而缺乏对因果关系的描述。然而,更多的输入信息并不能提高模型的预测能力。相反,它会引入大量的混淆因素,并在观测中提取虚假的相关性(Schölkopf等人2021;刘等2021a;邓和张2021),导致模型性能下降。

目前,交通流预测方法过分强调交通流的时空相关性(Liu et al . 2021b;Bai et al . 2020;Li et al . 2021b;Ye等2021;Han等人2021),忽略了导致观测产生的物理概念以及这些概念之间的因果关系。在不同条件的影响下,时空相关性被认为是不稳定的,在观测中可能存在伪相关。当我们深入研究arXiv:2301.08249v1的生成原理时,因果关系是必要的。2023年1月19日观测。例如,研究人员(Y e et al 2019;Deng et al . 2021)认为出租车流量和自行车流量之间存在一定的相关性,并且在多任务学习方面可以相互促进。如图1(b)所示,在正常情况下出租车和自行车的流量似乎是相关的。由于人们在高峰时段到达或离开一个地区的需求是一致的,因此趋势是相似的。然而,当下雨时(红色标记),由于天气变化,对自行车的需求减少,但对出租车的需求增加,在同一时期,趋势完全相反。这表明在天气的影响下,出租车和自行车流量之间存在虚假的相关性。第二,我们认为地域属性与人们的出行需求有很强的因果关系。如图1(b)和(c),该区域在医院属性的影响下具有较强的区域吸引力,导致需求量大,因此早、中午高峰期明显。此外,由于高需求(绿色标记),该地区长期拥挤。北京金融街是企业较多的主要办公区,早晚高峰明显(绿色标示)。我们在附录中提供了更多影响旅游需求的区域POI因素的例子。最后,对出租车的需求可能会影响交通速度。如图1(c)所示。出租车需求可以从流量推断出来。出租车流量越大,道路上的车辆越多,交通速度越慢(用蓝色标记)。相比之下,高公交需求并不意味着道路上有大量的公交车,因此公交需求与速度之间的因果关系不大。

本文将时空多模态交通序列生成过程视为一个条件马尔可夫过程,提出了一个因果条件隐马尔可夫模型(CCHMM)。我们通过变分推理来解开潜在的解释因素,并通过结构因果模型(SCM)建立潜在变量之间的因果关系(Pearl 2009;Scholkopf 2022)。与已有研究相比,本文从因果关系的角度建立了多模式交通流预测模型,而不是建立复杂的区域间邻接图来提取观测数据中的时空相关性。交通预测领域的理论创新在于:基于因果关系的思想,从观测生成原理的角度对多式联运系统的运行过程进行建模,而现有方法并未关注观测数据中的因果关系。我们提出了一个因果图(如图2所示)来描述多式联运交通系统的运行,并在其上定义了一个联合分布(如图2所示)。

1)描述观测数据生成原理。具体来说,首先,后验网络从条件信息和观测数据中推断出感兴趣概念的解缠表示,并学习变分后验分布。然后,先验网络根据条件信息对系统中存在的自然物理规律进行建模,学习感兴趣概念的先验分布。第三,因果传播模块挖掘因果效应,将从先验和后验网络推断出的外生变量转化为因果内生变量。最后,将因果内生变量输入到生成器中生成多式联运交通流,并将其作为预测结果。

本工作的主要贡献如下:

•我们分析了影响多式联运交通流生成过程的核心物理概念,解开了感兴趣概念的因果表示,并进一步探索了它们的因果关系。

•我们对以往的预测方法进行了改革,创新性地提出了从观测生成原理的角度对多模式交通流进行预测的因果条件隐马尔可夫模型(Causal Conditional Hidden Markov Model, CCHMM)。

•我们提出了一种相互监督的先验和后验训练方法,以捕获概念的物理规则并增强模型的因果可识别性。

•在真实世界数据集上的广泛实验表明,CCHMM全面优于最先进的多模式交通流量预测方法。

2相关工作

多模式交通流量预测。随着数据来源的多样化,交通流预测中的多模态融合成为近年来研究的重点。研究人员构建基于多任务学习框架的模型来同时预测交通流量和速度(Wang et al . 2021;Li et al . 2021a)。叶等人2019)等人利用卷积自编码器对空间交通流进行分解,实现异构LSTM同时预测三种交通模式下的交通流。Deng (Deng et al . 2021)等人学习了单模态交通流的多视图表示,并引入了一种跨视图自注意机制来捕捉不同交通模式之间的协同演化相关性。这些工作大多实现了多层感知(MLP)来编码条件信息(例如:天气和POI)使用CNN(Liang et al . 2021;曹等人2021)或图卷积网络(GCN)(Wu等人2019;Han et al . 2021)用于捕获空间特征,并使用RNN来捕获时间特征(Ye et al . 2021;Li et al . 2021b;Bai et al . 2020)。

最后,将融合后的特征输入下游预测网络。然而,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值